• 제목/요약/키워드: 사전기반

검색결과 3,206건 처리시간 0.031초

고차 데이터 분류를 위한 순차적 베이지안 샘플링을 기반으로 한 하이퍼네트워크 모델의 진화적 학습 기법 (Evolutionary Learning of Hypernetwork Classifiers Based on Sequential Bayesian Sampling for High-dimensional Data)

  • 하정우;김수진;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.336-338
    • /
    • 2012
  • 본 연구에서는 고차 데이터 분류를 위해 순차적 베이지만 샘플링 기반의 진화연산 기법을 이용한 하이퍼네트워크 모델의 학습 알고리즘을 제시한다. 제시하는 방법에서는 모델의 조건부 확률의 사후(posterior) 분포를 최대화하도록 학습이 진행된다. 이를 위해 사전(prior) 분포를 문제와 관련된 사전지식(prior knowledge) 및 모델 복잡도(model complexity)로 정의하고, 측정된 모델의 분류성능을 우도(likelihood)로 사 용하며, 측정된 사전분포와 우도를 이용하여 모델의 적합도(fitness)를 정의한다. 이를 통해 하이퍼네트워크 모델은 고차원 데이터를 효율적으로 학습 가능할 뿐이 아니라 모델의 학습시간 및 분류성능이 개선될 수 있다. 또한 학습 시에 파라미터로 주어지던 하이퍼에지의 구성 및 모델의 크기가 학습과정 중에 적응적으로 결정될 수 있다. 제안하는 학습방법의 검증을 위해 본 논문에서는 약 25,000개의 유전자 발현정보 데이터셋에 대한 분류문제에 모델을 적용한다. 실험 결과를 통해 제시하는 방법이 기존 하이퍼네트워크 학습 방법 뿐 아니라 다른 모델들에 비해 우수한 분류 성능을 보여주는 것을 확인할 수 있다. 또한 다양한 실험을 통해 사전분포로 사용된 사전지식이 모델 학습에 끼치는 영향을 분석한다.

규칙을 적용하여 세분화한 사전기반의 한국어 지명인식 시스템 연구 (A Study on Recognition of Korean Place Names System on the Internet by Using the Rules of Dictionary Use)

  • 장혜숙;정규철;이진관;박기홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.1097-1100
    • /
    • 2005
  • 개체명 인식에 있어서 반드시 선행되어야 할 작업이 문서의 내용을 대표하는 용어의 추출이다. 높은 신뢰도의 개체명 인식은 정보추출 시스템구축을 한 차원 높일 수 있을 것이다. 지금까지 일반적인 개체명 인식이나 인명의 개체명 인식에 대한 많은 연구가 활발하게 진행되어 왔지만 세분화된 지명 인식의 연구는 다루어지지 않았다. 본 논문에서는 수작업으로 작성된 규칙을 적용하여 세분화한 사전기반의 한국어 지명인식 시스템 개발 방법을 제안한다.

  • PDF

사전 학습된 Transformer 언어 모델의 이종 언어 간 전이 학습을 통한 자원 희소성 문제 극복 (Cross-Lingual Transfer of Pretrained Transformers to Resource-Scarce Languages)

  • 이찬희;박찬준;김경민;오동석;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.135-140
    • /
    • 2020
  • 사전 학습된 Transformer 기반 언어 모델은 자연어처리 시스템에 적용되었을 시 광범위한 사례에서 큰 폭의 성능 향상을 보여준다. 여기서 사전 학습에 사용되는 언어 모델링 태스크는 비지도 학습에 속하는 기술이기 때문에 상대적으로 데이터의 확보가 쉬운 편이다. 하지만 몇 종의 주류 언어를 제외한 대부분 언어는 활용할 수 있는 언어 자원 자체가 희소하며, 따라서 이러한 사전 학습 기술의 혜택도 누리기 어렵다. 본 연구에서는 이와 같은 상황에서 발생할 수 있는 자원 희소성 문제를 극복하기 위해 이종 언어 간 전이 학습을 이용하는 방법을 제안한다. 본 방법은 언어 자원이 풍부한 언어에서 학습된 Transformer 기반 언어 모델에서 얻은 파라미터 중 재활용 가능한 부분을 이용하여 목표 언어의 모델을 초기화한 후 학습을 진행한다. 또한, 기존 언어와 목표 언어의 차이를 학습하는 역할을 하는 적응층들을 추가하여 이종 언어 간 전이 학습을 돕는다. 제안된 방법을 언어 자원이 희귀한 상황에 대하여 실험해본 결과, 전이 학습을 사용하지 않은 기준 모델 대비 perplexity와 단어 예측의 정확도가 큰 폭으로 향상됨을 확인하였다.

  • PDF

유의어 사전 기반 환경기술 검색 시스템 설계 (Design of environmental technology search system using synonym dictionary)

  • ;;구영현;유성준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.582-586
    • /
    • 2020
  • 국가기후기술정보시스템은 국내 환경기술과 국외의 수요기술 정보를 제공하는 검색 시스템이다. 그러나 기존의 시스템은 유사한 뜻을 가진 단일 단어와 복수 단어들을 모두 식별하지 못하기에 유의어를 입력했을 경우 검색 결과가 다르다. 이런 문제점을 해결하기 위해 본 연구에서는 유의어 사전을 기반으로한 환경기술 검색 시스템을 제안한다. 이 시스템은 Word2vec 모델과 HDBSCAN(Hierarchical Density-Based Spatial Clustering of Application with Noise) 알고리즘을 이용해 유의어 사전을 구축한다. Word2vec 모델을 이용해 한국어와 영어 위키백과 코퍼스에 대해 형태소 분석을 진행한 후 단일 단어와 복수 단어를 포함한 단어를 추출하고 벡터화를 진행한다. 그 다음 HDBSCAN 알고리즘을 이용해 벡터화된 단어를 군집화 해주고 유의어를 추출한다. 기존의 Word2vec 모델이 모든 단어 간의 거리를 계산하고 유의어를 추출하는 과정과 대비하면 시간이 단축되는 역할을 한다. 추출한 유의어를 통합해 유의어 사전을 구축한다. 국가기후기술정보시스템에서 제공하는 국내외 기술정보, 기술정보 키워드와 구축한 유의어 사전을 Multi-filter를 제공하는 Elasticsearch에 적용해 최종적으로 유의어를 식별할 수 있는 환경기술 검색 시스템을 제안한다.

  • PDF

KorSciDeBERTa: 한국어 과학기술 분야를 위한 DeBERTa 기반 사전학습 언어모델 (KorSciDeBERTa: A Pre-trained Language Model Based on DeBERTa for Korean Science and Technology Domains)

  • 김성찬;김경민;김은희;이민호;이승우;최명석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.704-706
    • /
    • 2023
  • 이 논문에서는 과학기술분야 특화 한국어 사전학습 언어모델인 KorSciDeBERTa를 소개한다. DeBERTa Base 모델을 기반으로 약 146GB의 한국어 논문, 특허 및 보고서 등을 학습하였으며 모델의 총 파라미터의 수는 180M이다. 논문의 연구분야 분류 태스크로 성능을 평가하여 사전학습모델의 유용성을 평가하였다. 구축된 사전학습 언어모델은 한국어 과학기술 분야의 여러 자연어처리 태스크의 성능향상에 활용될 것으로 기대된다.

  • PDF

주요기반시설의 사전예방적보안(Cybersecurity by Design) 적용 방안에 관한 연구 (A Study on the Application of Cybersecurity by Design of Critical Infrastructure)

  • 유지연
    • 문화기술의 융합
    • /
    • 제7권1호
    • /
    • pp.674-681
    • /
    • 2021
  • 주요기반시설(critical infrastructure)을 대상으로 하는 사이버 공격이 증가하고 있다. 주요기반시설은 국가의 핵심 인프라이며 기반시설 간 상호의존성이 높은 특성을 가지고 있어서 일반적으로 사용되는 사이버 보안으로는 충분히 보호하기 어렵다. 특히 주요기반시설의 물리적 위험과 논리적 위험의 구분이 모호해지고 있어서 전체를 포괄하는 관점의 위험 관리가 이루어져야 한다. 이에 주요기반시설을 보다 적극적으로 보호하기 위한 방안으로 주요국에서는 보안내재화(SbD, security by design)를 적용하기 시작하였으며 보다 확대된 개념의 사전예방적보안(CSbD, cybersecurity by design)이 고려되고 있다. 이러한 사전예방적보안(CSbD)은 소프트웨어(SW) 안전 설계와 관리의 안정성 확보뿐만 아니라 물리적인 정치 및 기기(HW) 안전성과 사전 예방·차단 조치, 그리고 사이버회복탄력성(cyber resilience)까지 포함하는 포괄적인 보안 체계를 의미한다. 이에 본 연구는 미국과 싱가포르, 그리고 유럽에서 선도적으로 추진되고 있는 주요기반시설의 보안내재화(SbD) 방안들을 비교분석하고 주요기반시설에 대한 최적의 보안내재화(SbD) 적용 방안을 제시하고자 한다.

SVD에 기반한 모델 경량화를 통한 문서 그라운딩된 응답 생성 (Lightweight Language Models based on SVD for Document-Grounded Response Generation)

  • 이검;서대룡;전동현;강인호;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.638-643
    • /
    • 2023
  • 문서 기반 대화 시스템은 크게 질문으로부터 문서를 검색하는 과정과 응답 텍스트를 생성하는 과정으로 나뉜다. 이러한 대화 시스템의 응답 생성 과정에 디코더 기반 LLM을 사용하기 위해서 사전 학습된 LLM을 미세 조정한다면 많은 메모리, 연산 자원이 소모된다. 본 연구에서는 SVD에 기반한 LLM의 경량화를 시도한다. 사전 학습된 polyglot-ko 모델의 행렬을 SVD로 분해한 뒤, full-fine-tuning 해보고, LoRA를 붙여서 미세 조정 해본 뒤, 원본 모델을 미세 조정한 것과 점수를 비교하고, 정성평가를 수행하여 경량화된 모델의 응답 생성 성능을 평가한다. 문서 기반 대화를 위한 한국어 대화 데이터셋인 KoDoc2Dial에 대하여 평가한다.

  • PDF

사전정보 활용을 위한 관련 규칙 기반의 Ensemble 클러스터링 (Association-rule based ensemble clustering for adopting a prior knowledge)

  • 고송;김대원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.67-70
    • /
    • 2007
  • 본 논문은 클러스터링 문제에서 사전 정보에 대한 활용의 효율을 개선시킬 수 있는 방법을 제안한다. 클러스터링에서 사전 정보의 존재 시 이의 활용은 성능을 개선시킬 수 있는 계기가 될 수 있으므로 그의 활용 폭을 늘리기 위한 방법으로 다양한 사용 방법의 적용인 semi-supervised 클러스터링 앙상블을 제안한다. 사전 정보의 활용 방법의 방안으로써 association-rule의 개념을 접목하였다. 클러스터 수를 다르게 적용하더라도 패턴간의 유사도가 높으면 같은 그룹에 속할 확률은 높아진다. 다양한 초기화에 따른 클러스터의 동작은 사전 정보의 활용을 다양화 시키게 되며, 사전 정보에 충족하는 각각의 클러스터 결과를 제시한다. 결과를 총 취합하여 association-matrix를 형성하면 패턴간의 유사도를 얻을 수 있으며 결국 association-matrix를 통해 클러스터링 할 수 있는 방법을 제시한다.

  • PDF

음절 기반 형태소 분석을 위한 효율적인 사전 구성 (An Efficient Dictionary for Syllable-based Korean Morphological Analyzer)

  • 김남철;서영훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.411-415
    • /
    • 1997
  • 형태소 분석기의 처리 속도는 분석 알고리즘과 형태소 사전의 탐색 기법에 따라 크게 좌우된다. 형태소 분석 성능의 향상을 위하여 많은 형태소 분석 방법이 제안되었으며, 음절 정보를 이용하는 형태소 분석기는 한국어 음절의 통계적 특성 정보를 이용함으로써, 분석 후보의 개수를 최대한 적게 하여 처리 속도를 향상시켰다. 본 논문은 형태소 분석시 발생하는 분석 후보들의 특성을 고려하여 사전 탐색 요구시 가장 많은 처리 시간을 필요로 하는 디스크 읽기 횟수를 줄일 수 있도록 음절별 블록 인덱싱한 사전 구성 방법을 제안한다. 이 방법은 형태소 사전을 첫 음절별로 블록화하고 인덱싱하여 3개의 추가적인 인덱스 테이블을 구축하는 사전 구성 방법으로, 인덱스 테이블을 모두 주기억장치에 적재하였을 때에는 평균 61.6%, 크기가 작은 두 개의 인덱스 테이블만 주기억장치에 적재하였을 때에는 평균 25%의 디스크 읽기 횟수를 줄일 수 있다.

  • PDF

세종전자사전을 이용한 한국어 부사격의 의미역 결정 (Semantic Role Assignment for Korean Adverbial Case Using Sejong Electronic Dictionary)

  • 신명철;이용훈;김미영;정유진;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.120-126
    • /
    • 2005
  • 세종전자사전의 용언사전과 체언사전에 기재된 용언의 격틀과 명사의 의미부류는 문장의 의미분석을 위한 핵심적인 언어자원이다. 본 논문에서는 용언사전을 전산처리가 용이한 격틀사전으로 변형한 다음 이를 이용한 의미역 결정 시스템을 구축하였고 기계학습 방법에 기반한 의미역 결정 시스템과 혼합하여 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 방법에 대해 다루고 있다.

  • PDF