• Title/Summary/Keyword: 사인장 균열각

Search Result 6, Processing Time 0.025 seconds

Shear Mechanism of Steel-Fiber Reinforced High Strength Concrete Beams without Sheat Confinement (전단 보강이 없는 강섬유보강 고강도 철근 콘크리트보의 전단 거동에 관한 연구)

  • 오정근;이광수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.141-148
    • /
    • 1991
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams subjected to predominant shear are accomplished to determine their diagonal shear strength including ultimate shear strength. The par¬ameters varied were the fiber volume fraction(Vf) of the steel-fibers and shear span to depth ratio(a/d). The test result show that diagonal shear strength and ultimate shear strength are increased significantly due to crack arrest mechamsm. Predictive equations are suggested for evaluating the diagonal cracking strength and ultimate shear strength of the fiber reinforced high strength concrete beams.

Shear Strength Model for HPFRCC Beams with Main Longitudinal Tensile Reinforcements (주인장 철근을 가진 HPFRCC 보 부재 전단 강도 예측 모델)

  • Lee, Seong-Cheol;Shin, Kyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, many studies have been conducted on the structural behavior of HPFRCC, but most of the studies focused on the flexural behavior while studies on the shear behavior are limited. In this study, a model has been developed to reasonably predict the shear strength of a HPFRCC beam without stirrups. To develop the model, a HPFRCC beam was simply idealized with upper & lower chords resisting bending moment and a web shear element resisting shear forces. Then, taking into the account of the tensile behavior of HPFRCC, the main diagonal compressive strut angle and shear stress of the web shear element were evaluated on shear failure. Then, the shear strength of the HPFRCC beam could be evaluated. For the verification of the proposed model, the predictions by the proposed model were compared with the test results of 48 HPFRCC beams exhibiting shear failure. The results showed that the proposed model reasonably predicted the actual shear strength with an average of 1.045 and CoV of 0.125. This study are expected to be useful for related researches and design of members or structures to which HPFRCC is applied.

Experimental Study on the Static Behavior of the Spliced PSC Box Girder (분절 PSC 박스거더의 정적거동에 관한 실험적 연구)

  • Chung, Won-Seok;Kim, Jae-Hueng;Chung, Dae-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2007
  • The main objective of the paper is to investigate the static behavior of a prestressed concrete (PSC) girder that has been spliced with precast box segments. A 20 m long full-scale spliced PSC girder is fabricated and tested to compare its static performance against a monolithic girder. The monolithic girder has the same geometric and material properties with respect to the spliced girder. This includes infernal strain, deflections, neutral axis position, and crack patterns for both girders. The test also consists of monitoring relative displacements occurring across the joints. Both the horizontal displacement (gap) and vertical displacement (sliding) are measured throughout the loading procedure. All results have been compared to those obtained from the monolithic girder. It has been demonstrated that the spliced girder offers close behavior with respect to the monolithic girder up to the crack load. Both girders exhibits ductile flexural failure rather than abrupt shear failure at joints.

Axial Strain Of Reinforced Concrete Beams Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 보의 부재 축방향 변형률에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.251-260
    • /
    • 2001
  • It is required to evaluate the axial strain of reinforced concrete beams in order to predict the ductility of reinforced concrete beams subjected to reversed cyclic loading. A model was proposed to determine the axial strains In reinforced concrete beams by analysing the behavior of reinforced concrete sections and comparing with published test results. The proposed axial strain model inclusively reflected four kinds of paths : Path 1-steel bar in an elastic stage or a unloading region; Path 2-after flexural yielding; Path 3-a slip region; and Path 4-a reversing loading region. The equations to predict the axial strains of each path were proposed. The proposed equations took into account the effects of the loading program. Comparison of axial strains between experimental results and the results from proposed equations showed to be in a good agreement with experimental results.

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column (철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가)

  • 신종학;하기주;전찬목
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.303-311
    • /
    • 1998
  • Ten reinforced concrete rigid frames and infilled shear wall frames were tested under both vertical and cyclic loadings. Experiments were carried out to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeledin one-third scale size. Based on the test results reported in this study, the follwing conclusions can be made. For the rigid frame type and the fully rigid babel type shear wall specimens, the hysteresis diagrams indicate that the degradations of their strength were developed slowly beyond maximum carrying capacity. It was shown that when the hoop reinforcement ratio became higher, the energy dissipation capacity became larger and the failure mode became ductile. The specimens designed by the less hoop reinforcement for the fully rigid babel type shear wall, were mainly failed due to diagonal crack in comparison with the specimens designed by the larger hoop reinforcement ratio. Maximum horizontal resisting moment capacity of speciment designed by the fully rigid babel shear wall were increased by 5.47~7.95 times in comparison with the rigid frame type.