• Title/Summary/Keyword: 사이클변동계수

Search Result 11, Processing Time 0.021 seconds

A Study on Cyclic Variation by Idling in Gasoline Vehicle (가솔린자동차의 무부하 운전에서 사이클변동에 관한 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Cylinder-pressure based combustion analysis provides a mechanism through which a combustion researcher can understand the combustion process. This paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in the test engine, the burn parameters are determined on a cycle-to-cycle basis through analysis of the engine pressure data. The burn rate analysis program was used in the analysis of the data. Burn parameters were used to determine the variations in the input parameter-i.e., fuel, air, residual mass, and so on.

An Investigation on a Cause of Cycle Variation in Hydrogen Fueled Engine with Direct Injection (직접분사식 수소기관의 사이클변동 원인해석에 관한 연구)

  • Kim, Y.Y.;Lee, Jong T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.233-241
    • /
    • 2002
  • To achieve hydrogen power system with high performance and stable operation, the COVimep of hydrogen fueled engine with direct injection was evaluated with the change of engine speed, injection timing, air-fuel equivalence ratio and spark timing. And the cause of cycle variation was analyzed by using coefficient of variation in combustion period defined in this study. the results showed that the cycle variation of hydrogen fueled engine is mainly dependent on the early combustion period.

Analysis of the Cyclic Variability in SI Engine at Idling (공회전에서 스파크 점화기관 연소의 사이클 변동 해석)

  • Han, Sung-Bin;Chang, Yong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.709-717
    • /
    • 2000
  • Cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by the pressure parameters, combustion parameters, and flame front parameters. The coefficient of variation in indicated mean effective pressure ($COV_{IMEP}$) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle driveability problems usually result when $COV_{IMEP}$ exceeds about 10%. For analysis of the cyclic variability in SI engines at idling, the results show that cyclic variability by the $COV_{IMEP}$ or the coefficient of variation in maximum pressure can be explained and may be consequently reduced by the help of the optimum spark timings.

An Investigation of Combustion and EmissionCharacteristics in Heavy-Duty Hydrogen-CNG Engine (중대형 수소-천연가스 기관의 수소혼합율 변화에 대한 연소 및 배기특성)

  • LIM, H.S.;KIM, Y.Y.;LEE, J.T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.276-282
    • /
    • 2003
  • A hydrogen enriched CNG engine can be stably operated at ultra lean condition and reduce emission extremely. It also has advantage to increase gradually the use of hydrogen for the coming hydrogen-energy age. In this studies, the combustion and emission characteristics of heavy-duty hydrogen-CNG engine were investigated to verify the enhancement of performance by enriched hydrogen into natural gas. The results showed that a hydrogen-CNG engine could achieve ultra lean operation and low emission, while power was reduced by the decrease of intake air flow.

An Estimating Reliability of Machine Elements Subjected to Fluctuating Load Considering Static and Dynamic Allowable Safety Factors (변동하중시 정ㆍ동적 허용안전계수를 고려한 기계부품의 신뢰성 평가)

  • 양성모;강희용;김강희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • It is common to assume identical allowable safety factors in static strength defined by mean stress and in fatigue, defined by stress amplitude. Under the load with asymmetrical cycles the safety factor is not the same. In this paper, with the consideration of unequal allowable safety (actors a general method for estimating fatigue reliability of a machine element under a combined state of stress is derived based on the theory proposed by Prof. Kececioglu and a normal distribution. The calculation of fatigue reliability fur limited life is discussed with example.

  • PDF

Diagnosis of the Combustion Characteristics of Spark Ignition Engine with Compressed Natural Gas(CNG) Injection Type (압축천연가스(CNG) 분사식 스파크점화엔진의 연소특성 진단)

  • Ha, D.H.;Jin, J.M.;Hwang, S.I.;Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • 희박예혼합기의 급속연소에 관한 연구를 위하여 2-실린더 가솔린 엔진을 부실 타입의 압축천연가스(CNG) 분사 엔진으로 개조하였다. 본 연구에서는 부실의 최적설계에 관심을 두고 두 종류의 부실을 적용하여 실험을 실시하였고, 부실의 체적과 홀 개수는 1.5cc와 6개로 각각 동일하게 하고, 홀 직경을 0.8mm 및 1.1mm로 달리하였다. CNG연료는 포트연료분사(Port fuel injection; PFI)와 부실분사(Sub-chamber injection; SCI)에 의해 엔진에 독립적으로 공급되고, 그 실험결과로 구한 연소압력, 평균유효압력(IMEP), 질량연소분율과 사이클변동계수(COV) 등을 서로 비교하였다. 본 연구의 대표적 실험연구결과로서 PFI 타입의 엔진연소특성은 희박예혼합기의 경우를 제외하고 모든 조건에 있어서 기존의 가솔린 엔진과 비슷하였고, SCI 타입의 엔진연소특성으로 평균유효압력은 부실 내에 불완전 예혼합기형성으로 PFI 타입보다 낮았으며, COV는 SCI 타입이 희박가연한계가 확대됨으로 인하여, 특히 높은 공기과잉률 범위에서 PFI 타입과 비교해 보다 좋은 결과를 나타내었다.

Development and Application of High Energy Ignition System Using Plasma (플라즈마 응용 고 에너지 점화 시스템 개발 및 적용)

  • Kang, Hyehyun;Choi, Duwon;Park, Jinil;Lee, Jonghwa;Park, Kyoungseok;Ahn, Jongyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.148-156
    • /
    • 2014
  • This study is a follow-up study of "Development of Plasma Ignition System" was presented at the 2013 KSAE spring conference. This study compares lean limit of conventional ignition system with plasma ignition system on constant volume combustion test & Engine Combustion test.

Analysis on Cycle-by-Cycle NO Emissions from an Sl Engine with Fast HO Analyser (고속 NO 분석기를 이용한 Sl 엔진에서의 사이클 변동에 따른 NO 배출에 관한 분석)

  • 성정민;김현우;이경환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • The NO emissions at the exhaust manifo1d were investigated with a fast NO analyzer to investigate the cycle-by-cycle variations on NO emissions level and the dependence of NO emissions on combustion. The measurement was performed with a part load condition with respect to the mixture ratios and the changes in loads at 1800rpm. The averaged values were obtained during 200 cycles. We found that there is characteristic pattern in 70 emissions from exhaust port and it was possible to set a representative value with the data sampled during specific period. As the load increased, the characteristics of NO emissions were more dependent on combustion pressures. It was also analyzed that the correlation between combustion pressures and NO emissions for different equivalence ratios tends to increase as the mixture goes leaner, Furthermore, this correlation for the lean mixture near the lean limit seemed to be kept.

Study on the Combustion Characteristics of Light-Load RI-CNG Engine (저부하 라디칼 착화 압축천연가스 엔진의 성능연구)

  • Liu, Yu;Dong, Yong;Keom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • 본 연구는 라디칼 착화(Radical Ignition이하 RI) 기술을 적용한 부실직분식 CNG(Compressed Natural Gas) 엔진의 구동특성에 관한 것이다. 실험엔진은 단기통 디젤엔진을 개조하여 사용하였으며, 이는 부실식 디젤엔진처럼 연소실이 주실과 부실로 나누어져 있다. 부실에 분사된 CNG는 스파크플러그로 점화하며, 부실로 부터의 연소가스가 주실 희박 혼합기를 시켜 구동하는 엔진이다. RI 기술은 연소속도를 향상시킬 수 있다. 본 연구는 주로 저부하 RI-CNG 엔진의 성능을 연구하였다. 연료분사기간은 9 ms, 공기과잉률은 1.0, 1.2, 1.4로 하였다. 연료분사시기는 엔진의 배가밸브가 닫히는 ATDC $20^{\circ}CA$ 부터 $120^{\circ}CA$ 사이로, $20^{\circ}CA$ 간격으로 지각시켜 가며 실험하였다. 본 연구는 연료분사시기 및 공기과잉률이 연소최고압력 ($P_{max}$), 연소최고압력시기(${\Theta}_{pmax}$), 도시평균유효압력(IMEP), 사이클 변동계수($COV_{imep}$), 연소속도에 미치는 양향 등을 구하고 분석하였다.

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.