• Title/Summary/Keyword: 사이드분사

Search Result 2, Processing Time 0.016 seconds

Flame deflector design of test facility to propulsion system model (추진기관 시스템 시험설비의 화염유도로 설계)

  • Jeon, Sung-Bok;Lee, Jae-Ho;Lee, Kwang-Jin;Cho, Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.597-602
    • /
    • 2012
  • Flame deflector is an important plan item for protecting propulsion system model, test facility, and life. This study suggests the way of flame deflector design in test facility evaluating performance of 75 ton and 300ton PSM. The flame deflector height was designed as 30m using a slope way in establishment location of facility. The flame deflector suitability was considered according to the shape of open and closed type. Also the cooling duct was made as modeling in accordance with core and side injection type.

  • PDF

Visualization of Flow inside the Side Channel Type Regenerative Blower (사이드 채널형 재생블로워의 내부 유동 가시화)

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.