• 제목/요약/키워드: 사용자 키워드학습

검색결과 84건 처리시간 0.018초

등급에 따른 웹 유해 문서 분류 기술 (A Distinction Technology for Harmful Web Documents by Rates)

  • 김영수;남택용;원동호
    • 정보처리학회논문지C
    • /
    • 제13C권7호
    • /
    • pp.859-864
    • /
    • 2006
  • 웹의 개방성은 사람들로 하여금 언제, 어디서든 손쉽게 유용한 정보를 획득할 수 있게끔 하였다. 하지만 인터넷은 유용한 정보의 손쉬운 활용이라는 순기능과 더불어 사회적으로 통제를 필요로 하는 유해한 정보 역시 인터넷을 이용하는 이용자들에게 무차별적으로 제공함으로써 역기능을 발생시키고 있다. 성인 컨텐츠 같은 정보들은 모든 사용자들, 특히 청소년들에게 악영향을 미칠 수 있다. 또한, 변태적인 성인 사이트들이 담고 있는 컨텐츠들은 성인들의 정신 건강에도 해를 미치게 된다. 한편, 인터넷은 전 세계적으로 연결된 개방망이므로 유해정보 제공자를 각국의 법적, 제도적 장치를 이용하여 규제하는데 한계가 있다. 또한, 유해 사이트, 유해성 스팸 메일, P2P 등 다양한 경로를 통해 유해 정보를 접할 수 있기 때문에, 어떤 시스템에 특화된 유해정보 분류기술을 개발하는 것은 바람직하지 않다. 따라서, 유해정보의 내용 자체에 기반하여 유해 여부를 자동으로 판별할 수 있는 유해정보 판별 핵심 기술의 연구 및 개발의 중요성이 점차 부각되고 있다. 이에 본 논문에서는 내용 기반 기술을 이용한 효율적인 유해 웹 문서 텍스트 판별 시스템을 제시한다.

감성분석 결과와 사용자 만족도와의 관계 -기상청 사례를 중심으로- (Relationship between Result of Sentiment Analysis and User Satisfaction -The case of Korean Meteorological Administration-)

  • 김인겸;김혜민;임병환;이기광
    • 한국콘텐츠학회논문지
    • /
    • 제16권10호
    • /
    • pp.393-402
    • /
    • 2016
  • 기상청에서 현재 시행되고 있는 만족도 설문조사의 한계를 보완하기 위해 SNS를 통한 감성분석이 활용될 수 있다. 감성분석은 2011~2014년 동안 '기상청'을 언급한 트위터를 수집하여 나이브 베이즈 방법으로 긍정, 부정, 중립 감성을 분류하였다. 기본적인 나이브 베이즈 방법에 긍정, 부정, 중립의 각 감성에서만 출현한 형태소들로 추가사전을 만들어 감성분석의 정확도를 향상시키는 방법을 제안하였다. 분석결과 기본적인 나이브 베이즈 방법으로 감성을 분류할 경우 약 75%의 정확도로 학습데이터를 재현한데 반해 추가 사전을 적용할 경우 약 97%의 정확성을 보였다. 추가사전을 활용하여 검증자료의 감성을 분류한 결과 약 75%의 분류 정확도를 보였다. 낮은 분류 정확도는 향후 기상 관련의 다양한 키워드를 포함시켜 학습데이터 양을 늘려 감성사전의 질을 높임과 동시에 상시적인 사전의 업데이트를 통해 개선될 수 있을 것이다. 한편, 개별 어휘의 사전적 의미에 기반한 감성분석과 달리 문장의 의미에 기반하여 감성을 분류할 경우 부정적 감성 비율의 증가와 만족도 변화 추이를 설명할 수 있을 것으로 보여 향후 설문조사를 보완할 수 있는 좋은 수단으로 SNS를 통한 감성분석이 활용될 수 있을 것으로 사료된다.

비정형 패션 이미지 검색을 위한 MASK R-CNN 선형처리 기반 CNN 분류 학습모델 구현 (Implementation of CNN-based Classification Training Model for Unstructured Fashion Image Retrieval using Preprocessing with MASK R-CNN)

  • 조승아;이하영;장혜림;김규리;이현지;손봉기;이재호
    • 한국산업정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.13-23
    • /
    • 2022
  • 본 논문에서는 패션 분야의 비정형 데이터 검색을 위한 패션 아이템별 세부 컨포넌트 이미지 분류 알고리즘을 제안한다. 코로나-19 환경으로 인하여 최근 AI 기반 쇼핑몰이 증가하는 추세이다. 하지만 기존의 키워드 검색과 사용자 서핑 행위 기반 개인 맞춤형 스타일 추천으로는 정확한 비정형 데이터 검색에는 한계가 있다. 본 연구는 다양한 온라인 쇼핑 사이트에서 크롤링한 이미지를 사용하여 Mask R-CNN을 활용한 전처리를 진행한 후, CNN을 통해 패션 아이템별 컴포넌트에 대한 분류를 진행하였다. 셔츠의 카라 및 패턴과 청바지의 핏, 워싱 및 컬러에 대한 분류를 진행하였으며, 다양한 전이학습 모델을 비교 분석한 후 가장 높은 정확도가 나온 Densenet121모델을 사용하여 셔츠의 카라는 93.28%, 셔츠의 패턴은 98.10%의 정확도를 도달하였으며, 청바지의 핏은 Notched, Spread, Straight 3가지의 클래스의 경우 91.73%, Regular 핏을 추가한 4가지의 클래스의 경우 81.59%, 청바지의 색상은 93.91%, 청바지의 Washing은 91.20%, 청바지의 Demgae는 92.96%의 정확도를 도출하였다.

IoT 환경에서 인터유저빌리티(Interusability) 개선을 위한 사물성격(Personality of Things)중심의 UI 프로토타이핑에 대한 연구 (A Study on UI Prototyping Based on Personality of Things for Interusability in IoT Environment)

  • 안미경;박남춘
    • 한국HCI학회논문지
    • /
    • 제13권2호
    • /
    • pp.31-44
    • /
    • 2018
  • 사물인터넷(Internet of Things)시대에는 다양한 사물이 연결되어 사물들 스스로가 데이터를 획득하여 이를 바탕으로 학습하고 동작한다. 이는 사물이 사람의 모습을 닮아가고 있다고 볼 수 있고 변화한 사물과 사람이 어떻게 소통하는가를 설계하는 것이 핵심 이슈로 떠오르고 있다. 이러한 IoT 환경이 도래함에 따라 UI 디자인 분야에서도 많은 연구가 진행되었다. 멀티모달리티(Multi-modality)와 인터유저빌리티(Interusability) 등의 키워드를 통해서 UI 분야에서도 복합적인 요소를 고려하려는 연구가 진행됐음을 알 수 있다. 하지만 기존의 UI 디자인 방법론으로는 IoT 환경에서 사용자 인터페이스(UI)를 설계할 때 사물, 사람, 데이터가 상호작용하는 방식에 대해서 구조화하고 테스트하는데 한계가 있다. 따라서 본 연구에서 새로운 UI 프로토타이핑 방법을 제안하였다. 본 논문의 주요 분석과 연구는 다음과 같다: (1) 먼저 사물의 행동 프로세스를 정의하였다. (2) 행동 프로세스를 토대로 기존의 IoT 제품을 분석하였다. (3) 사물성격(Personality of Things)유형을 구분 지을 수 있는 프레임워크를 제작하였다. (4) 프레임워크를 바탕으로 사물성격(Personality of Things) 유형을 도출하였다. (5) 3개의 대표 사물성격(Personality of Things)을 실제 스마트 홈 서비스에 적용하여 프로토타이핑 테스트를 해보았다. 본 연구는 새로운 UI 프로토타이핑 방법을 제안하여 더 총체적인 방식으로 IoT 서비스에 대한 사용자 경험(UX)을 확인할 수 있었다는 데 의의가 있다. 또한, 향후 본 연구를 발전시켜 인공지능(AI) 기술이 발전한 환경에서 지능화된 서비스의 정체성(Identity) 확립의 도구로 사물성격(Personality of Things) 개념을 활용할 수 있을 것이라 생각한다.

  • PDF