• 제목/요약/키워드: 사용자 취향

검색결과 285건 처리시간 0.021초

지능형 통증 간호중재 유헬스 시스템 성능분석 (Performance Analysis of Intelligence Pain Nursing Intervention U-health System)

  • 정호일;류현;정경용;이영호
    • 한국콘텐츠학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2013
  • 개인화 추천 시스템은 자동화된 정보 필터링 기술을 적용하여 사용자의 취향에 맞는 상품을 추천해 주는 시스템이다. 이러한 기술 중 협력적 필터링은 비슷한 패턴을 가진 형태들을 식별해 내는 기법이다. 따라서 이를 이용하면 과거 유사한 형태를 가진 환자의 자료를 통하여 통증 강도를 유추 하거나 분류된 환자의 프로필의 유사도에 따라 관련 사정을 추출하는 것이 가능하게 된다. 유사도 가중치 추출의 대표적인 방법인 피어슨 상관계수를 사용하는 방법은 데이터의 양에 따라 표본 데이터가 적은 경우 예측 값이 부정확해지고 양이 방대한 경우 계산량이 제곱으로 늘어 신속한 결과를 추출할 수 없게 되는 단점이 있다. 본 논문에서는 MAE와 순위 스코어를 사용하여 의미있는 데이터를 추출하기 위한 표본 자료의 규모와 유사도 군집량을 비교하여 구현된 지능형 통증 간호중재 유헬스 시스템의 우수성을 확인하였다. 이를 통하여 통증환자의 고통호소를 간호사가 신속하게 파악할 수 있도록 기초자료와 가이드라인을 제공하게 되고, 따라서 환자의 안위 증진이 향상되게 된다.

퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색 (The Weight Decision of Multi-dimensional Features using Fuzzy Similarity Relations and Emotion-Based Music Retrieval)

  • 임지혜;이준환
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.637-644
    • /
    • 2011
  • 음원이 디지털화 되면서 쉽게 음악을 구매하고 들을 수 있게 되었다. 하지만 많은 음악 중에서 음악가, 장르, 제목, 앨범 타이틀 등 전통적인 음악 정보를 이용하여 사용자들이 자신의 취향에 맞는 음악을 찾는 데는 여전히 어려움이 있다. 이러한 어려움을 해소하기 위해 내용기반 음악검색과 감성기반 음악검색 방법 등이 제안되고 개발되고 있다. 본 논문에서는 이러한 어려움을 해소하기 위한 감성기반 음악 검색방법에서 다차원 벡터형태의 MPEG-7 저수준 오디오 서술자들의 감성기반 검색에서의 중요도를 결정하기 위한 새로운 방법을 제안하였다. 제안된 방법에서는 상호간에 대립되는 감성을 대표되는 음악들의 유사성을 다차원 서술자 관점에서 측정하고 이 유사관계를 러프 근사화와 군집 내/군집 간의 유사성 비율을 이용하여 서술자의 중요성을 결정한다. 중요성을 바탕으로 결정된 가중치는 여러 개의 오디오 서술자들의 유사성을 총체화하는데 이용되며 이를 활용하여 감성기반 음악검색을 수행한다. 제안된 방법은 내용기반 음악 검색을 기반으로 한 감성기반 음악검색 구조에서 실험한 결과 평균 검색 개수측면에서 기존의 휴리스틱 방법보다 좋은 검색 결과를 나타내었다.

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

텍스트 분석을 통한 이종 매체 카테고리 다중 매핑 방법론 (Mapping Categories of Heterogeneous Sources Using Text Analytics)

  • 김다솜;김남규
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.193-215
    • /
    • 2016
  • 최근 다양한 소셜 네트워크 서비스의 증가로 인해 사용자들은 각자의 목적 및 취향에 따라 여러 매체를 동시에 이용하는 경향을 보이고 있다. 또한 특정 주제에 대한 정보를 수집할 때에도 소셜 네트워크 서비스, 인터넷 뉴스, 블로그 등 여러 매체를 동시에 활용하는 것이 일반적이다. 하지만 다양한 매체를 통해 유통되는 문서들은 서로 유사한 주제, 심지어는 동일한 내용을 다루더라도 각 매체 별 정책 및 기준에 따라 각기 다른 카테고리로 관리되고 있으며, 이는 이종 매체를 아우르는 범위에서 특정 카테고리에 대한 탐색을 수행하고자 하는 시도에 걸림돌로 작용하고 있다. 이러한 제약을 극복하기 위해, 본 연구에서는 기존 매체 고유의 카테고리 체계는 그대로 유지하면서 이종 매체 간 카테고리 매핑을 수행하는 방법을 제시한다. 즉, 개별 문서를 다양한 매체의 관점에서 재분류하고 이러한 결과를 문서에 2차원 레이블로 저장함으로써, 이종 매체에 속한 다양한 문서들을 마치한 매체에 속한 것과 같이 동일한 카테고리 기준으로 탐색할 수 있는 논리적 장치를 제안한다. 본 논문에서는 국내 인터넷 뉴스 포털 사이트 두 곳의 뉴스 기사 6,000건에 대해 제안 방법론을 적용한 실험을 통해 각 기사에 매체와 카테고리 정보로 구성된 2차원 레이블을 부여하였으며, 매체 간, 지도 학습과 준지도 학습 간, 동질 학습 데이터와 이질학습 데이터 간의 정확도 비교 실험을 수행하였다. 특히 매우 흥미롭게도, 일부 카테고리에서 이질 학습 데이터를 사용한 준지도 학습의 분류 정확도가 지도 학습 및 동질 학습 데이터를 사용한 준지도 학습의 분류 정확도보다 높게 나타나는 현상을 발견하였다.

소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로 (Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics)

  • 서봉군;김건우;박도형
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.179-196
    • /
    • 2019
  • 최근의 '똑똑한 소비자(Smart Consumer)'라 불리는 소비자가 많아지고 있는데, 이들은 제조사나 광고를 통해 전달되는 정보에 의존하지 않고, 기존 사용자나 전문가들의 후기, 여러 과학 지식을 획득하여 제품에 대한 이해를 높이고, 본인 스스로가 직접 판단하여 구매하고 있다. 특히나 화장품 분야는 인체 유해성과 같은 부정적인 요소에 대한 민감도가 높고, 자신의 고유한 피부 특성과의 조화도 고려되어야 하기 때문에, 전문적인 지식과 타인의 경험, 본인의 과거 경험 등을 종합적으로 생각하여 구매 의사결정을 내려야 하고, 이에 대해서 적극적인 소비자가 많아지고 있다. 이러한 움직임은 '셀프 뷰티' 와 같은 '셀프' 문화의 열풍과 함께, 문화 현상인 '그루밍족'의 등장, 사회적 트렌드인 'K-뷰티' 와도 동행한다고 할 수 있다. 맞춤형 화장품에 대한 관심의 급부상도 이러한 현상 중 하나라 볼 수 있다. 소비자들의 맞춤형 화장품의 니즈를 충족시키기 위해, 화장품 제조사나 관련 기업들은 ICT기술과의 융합을 통하여 프리미엄 서비스를 중심으로 소비자의 니즈에 대응하고 있다. 그러나 기업 및 시장 현황이 맞춤형 화장품을 향해 진화하고 있지만, 소비자의 피부 상태, 추구하는 감성, 실제 제품이나 서비스까지 소비자 경험을 전체적으로 완전하게 다루는 지능형 데이터 플랫폼은 부재한다. 본 연구에서는 소비자 경험에 대한 지능형 데이터 플랫폼 구축을 위한 첫 단계로 소비자 언어 기반의 화장품 감성 분석을 수행하였다. 소비자들 개인의 선호나 취향이 분명한 앰플/세럼 카테고리를 중심으로 매출 순위 1위에서 99위까지의 99개 제품을 선정하여, 블로그와 트위터 등의 SNS 상에 언급되는 후기 내에 화장품 경험에 대한 소비자 감성을 수집하였다. 총 357개의 감성 형용사를 수집하였고, 고객 여정 워크샵을 통해 유사 감성을 합치고, 중복 감성을 통합하는 작업을 수행하였으며, 최종 76개 형용사를 구축했다. 구축한 형용사에 대한 SOM 분석을 통해 화장품에 대한 소비자 감성에 대한 클러스터링을 실시했다. 분석 결과, 총 8개의 클러스터를 도출했고, 클러스터 별 각 노드의 벡터 값을 기준으로 소비자 감성 Top 10을 도출했다. 소비자 감성을 기준으로 클러스터별 소비자 감성에 서로 다른 특징이 발견됐으며, 소비자에 따라 다른 소비자의 감성을 선호, 기존과는 다른 소비자 감성을 고려한 추천 및 분류 체계가 필요함을 확인했다. 연구 결과를 통해 감성 분석의 활용 도메인이 화장품만이 아닌 다양한 영역으로 확장될 수 있음 확인했으며, 감성 분석을 통한 소비자 인사이트를 도출할 수 있다는 점을 시사했다. 또한, 본 연구에서 활용한 디자인 씽킹(Design Thinking)의 방법론의 적용하여 화장품 특화된 감성 사전을 과학적인 프로세스로 구축했으며, 화장품에 대한 소비자의 인지 및 심리에 대한 이해를 도울 수 있을 것으로 기대한다.