• Title/Summary/Keyword: 사용자 성향 변수

Search Result 24, Processing Time 0.015 seconds

A Comparative Study of Emotional Response to Korean Drama among Countries: With Drama 'Goblin' (한국 드라마 수용에 있어서 국가별 감정 반응 분석: 드라마 <도깨비>를 중심으로)

  • Lee, Yewon;Woo, Sungju
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • This research aims to investigate 'Hallyu' contents consumption tendency of consumers from Korea, Japan, and the United States by analyzing their emotional responses. With the development of social media, research on emotion analysis by reviewing text materials has grown. Whereas environmental variables affect consumer demand towards 'Hallyu' contents, little comparative analyses have been conducted on the emotional responses of consumers from different countries. In this research, the emotional prototype model proposed by Russell(1980) used to extract and distinguish emotional words to clarify how people in the three countries differently perceive the Korean drama "Goblin". First of all, the SNS reviews were collected during a two-month period (February 12 to April 12). Second, significant factors were identified in the collected data according to Russell's emotion model. Third, random forest was applied to organize the selected variables in the order of variable importance. Fourth, the correlations among the emotional words were compared. Lastly, the accuracy of the trained model was measured using the test dataset. The results show that "Happy" was found to be the greatest factor in Korea and in the United States and "Pleased" in Japan. Emotional words correlations showed that when watching the drama "Goblin", "passive unpleasure" was the main factor associated with individual's interest in Korea whereas "passive pleasure" was associated with individual's interest in Japan and in the United States. Based on the results, this research suggests the possibility of developing evaluation guidelines for emotional responses of different countries towards 'Hallyu' contents.

The Role of Social Interaction Influencing on Flow and Immersion in the Context of Online Games: The Moderating Effect of Offline Dependence (온라인 게임에서 사회적 상호작용이 충만감과 중독에 미치는 영향: 오프라인 의존성의 조절효과)

  • Kim, Yong-Young
    • Information Systems Review
    • /
    • v.12 no.3
    • /
    • pp.117-139
    • /
    • 2010
  • Online games are not only tools for enjoyment, they are also the linking pins connecting between the online and the offline worlds. The effects affecting other domains can be termed 'spillover'. With the process behaving as forward and reverse spillovers, there are interaction effects on online and offline behavior. However, there is little research dealing with the spillover effects from the offline to the online domain. This study concentrates on the individual behavior of online garners centering on offline dependence. With the purpose of finding the factors affecting both flow and immersion, I am interested in the moderator effect of offline dependence influencing both flow and immersion from social interaction. A research model is developed and a survey research is conducted from one of universities in Korea. The results show that flow is strongly influenced by skills, challenge, and social interaction, but immersion is only influenced by skills and social interaction and not challenge. The findings reveal that the moderating effect of offline dependence affects only the relationship from social interaction to the immersion on the lower offline dependence group.

A Study of Collective Knowledge Production Mechanisms of the three Great SNS (3대 SNS에서의 집단적 지식생산 메커니즘 연구)

  • Hong, Sam-Yull;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.1075-1081
    • /
    • 2013
  • Twitter, Facebook, and KakaoStory are the major SNS in Korea. Social knowledge production is being produced by those services from numerous collaboration and co-participation in those SNS. Wikipedia or Naver JishikIN service was regarded as the representative product of collective knowledge production during the wired internet era. However now at the wireless internet era centered with smart phones, various forms of collective knowledge production would be achieved by connecting to SNS in real-time. In this thesis, the survey data of collective knowledge production for users of three SNS have been compared and analyzed. The difference of the collective knowledge production mechanism among Twitter, Facebook and KakaoStory has been studied and compared through three variables: the motivation of collective knowledge production, the preference of collective knowledge production model, and collective knowledge production cultural perception. As a result of the analysis of the discriminant factors for three SNS user groups, it turns out that the diversity-toward usage motivation, personal contribution motivation, and collective knowledge production tendency perception are the most influential variables. This thesis is of significance in that it unites the value of social science such as social capital and collective knowledge production from the viewpoint of computer science and opens the new chapter of collective knowledge production with the real-time SNS of wireless internet from the wired internet.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.