Journal of the Korea Society of Computer and Information
/
v.14
no.1
/
pp.1-8
/
2009
Learning user's preference is a key issue in intelligent system such as personalized service. The study on user preference model has adapted simple user preference model, which determines a set of preferred keywords or topic, and weights to each target. In this paper, we recommend multi-perspective user preference model that factors sentiment information in the model. Based on the topicality and sentimental information processed using natural language processing techniques, it learns a user's preference. To handle timc-variant nature of user preference, user preference is calculated by session, short-term and long term. User evaluation is used to validate the effect of user preference teaming and it shows 86.52%, 86.28%, 87.22% of accuracy for topic interest, keyword interest, and keyword favorableness.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.6
/
pp.716-720
/
2006
Fuzzy sets are good for abstracting and unifying information using natural language like terms. However, fuzzy sets embody vagueness and users may have different attitude to the vagueness, each user may choose difference one as the best among several fuzzy values. In this paper, we develop a method teaming a user's, preference on fuzzy values and select one which fits to his preference. Users' preferences are modeled with artificial neural networks. We gather learning data from users by asking to choose the best from two fuzzy values in several representative cases of comparing two fuzzy sets. In order to establish tile representative comparing cases, we enumerate more than 600 cases and cluster them into several groups. Neural networks ate trained with the users' answer and the given two fuzzy values in each case. Experiments show that the proposed method produces outputs closet to users' preference than other methods.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2004.11a
/
pp.151-154
/
2004
디지털 방송의 시작과 함께, 지상파, 위성, 케이블과 같은 다양한 매체를 통한 다채널 방송 시청 환경의 도래는 사용자에게 많은 방송 프로그램 시청 정보를 전달하게 되었다. 이와 더불어, 방송 단말에 전송된 다양한 방송 프로그램 정보를 탐색하고 선호 방송 프로그램을 선별하기 위해서는 사용자에게 많은 노력이 요구된다. 이러한 요구에 따라, 똔 논문에서는 다채널 방송 시청 환경 하에서 사용자의 방송 프로그램 시청 히스토리를 분석하고, 특정 시간에 따른 사용자의 방송 프로그램 시청 패턴을 추출하여 방송 프로그램 장르에 대한 사용자 선호도를 자동으로 계산하는 알고리즘을 제안하고, MPEG-7 MDS 구조에 따른 사용자 선호도 서술과 사용자의 선호도에 따라 방송 프로그램을 자동적으로 추천하는 TV 프로그램 추천 어플리케이션을 소개한다 본 실험을 위해 실제 연령대별, 성별, 시간대별로 사용자의 TV 시청 자료를 사용하였으며, 실험결과를 통해 본 논문에 제안된 베이시안 네트워크 기반 사용자 자동 학습 알고리즘이 효과적으로 사용자 선호도를 학습할 수 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.106-108
/
2003
최근 들어 인터넷의 급속한 발전으로 사용자가 처리해야할 점보의 양이 급속히 늘어나게 됨으로써 사람이 혼자만의 힘으로 이 많은 정보를 처리하는 것이 하나의 고단한 작업이 되었고, 이 작업을 돕기 위한 소프트웨어 에이전트(software agent) 의 필요성이 대두되었다. 본 논문에서는 구현한 소프트웨어 에이전트가 사용자의 업무보조 (personal assistant) 라는 자신의 임무를 수행하기 위하여 온톨로지(ontology)를 기반으로 사용자의 선호도(preference) 와 의사결정 패턴을 학습하여 사용자 프로파일(user Profile) 을 작성한다. 학습한 프로파일을 바탕으로 사용자의 선호도와 일치하는 제품을 추천하는 지능형 에이전트를 제안하고. 실질적인 실험을 통해 학습된 사용자의 성향을 분석한다.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.240-245
/
2006
본 논문에서는 의상에 대한 사용자 선호도를 찾아내는 기법에 대하여 기술한다. 의상에 대한 사용자 선호도를 찾기 위해서 의상 데이터에 대해 데이터 모델을 새롭게 제안한다. 이 데이터 모델을 기반으로 사용자의 의상관련 히스토리를 저장한다. 이렇게 저장된 히스토리 정보에 기계 학습 기법 중 최근 각광받고 있는 SVM 기법을 적용하여 사용자 선호도를 찾아내도록 하였다. 이 결과를 다른 학습 기법인 Naive Bayes 기법을 사용하여 의상에 대한 사용자 선호도를 검색한 성능과 비교하여 우리 모델이 더 좋다는 것을 확인하였다. 우리는 5명의 사용자에 대해서 동일한 취향을 갖는 사용자가 몇 명인지에 따라 A(모두 다름), B(2명), C(3명), D(4명), E(모두 같음) 형태별, 사용자별 1000건의 히스토리를 일정한 기준에 따라 생성했다. 그리고 이 중에서 900건을 학습용 데이터, 100건을 검증용 데이터로 선정하여 실험이 진행되었다.
퍼지값을 크기 순서에 의해 나열하는 연구는 많이 이루어져 왔다. 그러나 기존의 방법들은 퍼지값을 제안된 기준에 의해 독자적으로 해석하여, 비교결과를 산출하는 것이 대부분이다. 본 논문에서는 사용자의 의견 또는 선호도를 반영한 학습데이터를 신경망을 이용하여 학습하는 방법을 제안한다. 이 학습이 끝난 후 얻어지는 신경망은 주어진 학습데이터를 이용하여 사용자의 퍼지값에 대한 모델을 생성하게된다.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.4
/
pp.443-450
/
2005
In this paper, we propose an intelligent model lot extraction of the web user's preference and present the results of evaluation. For this purpose, we analyze shortcomings of current information retrieval engine being used and reflect preference weights on learner. As it doesn't depend on frequency of each word but intelligently learns patterns of user behavior, the mechanism Provides the appropriate set of results about user's questions. Then, we propose the concept of preference trend and its considerations and present an algorithm for extracting preference with examples. Also, we design an intelligent model for extraction of behavior patterns and propose HTML index and process of intelligent learning for preference decision. Finally, we validate the proposed model by comparing estimated results(after applying the Preference) of document ranking measurement.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.325-327
/
2002
정보검색 태스크에서 사용자 모델링의 목적은 관련정보 검색을 용이하게 해주기 위하여 사용자의 관심도 또는 필요정보의 모델을 학습하는 것으로 시간적인 속성(temporal characteristics)을 가지며 관심 이동을 적절하게 반영하여야 한다. 강화학습은 정답이 주어지지 않고 사용자의 평가만이 수치적으로 주어지는 환경에서 평가를 최대화 한다는 목표를 가지므로 사용자 프로파일 학습에 적용할 수 있다. 본 논문에서는 사용자가 문서에 대해 행하는 일련의 행위를 평가값으로 하여 사용자가 선호하는 용어를 추출한 후, 사용자 프로파일을 강화학습 알고리즘으로 학습하는 방법을 제안한다. 사용자의 선호도에 적응하는 능력을 유지하기 위하여 지역 최대값들을 피할 수 있고, 가장 좋은 장기간 최적정책에 수렴하는 R-Learning을 적용한다. R-learning은 할인된 보상값의 최적화보다 평균 보상값을 최적화하기 때문에 장기적인 사용자 모델링에 적합하다는 것을 제시한다.
In these days, recommendation service in mobile environments is in the limelight due to the spread of mobile devices and an increase of information owing to advancement of computer network. The restaurant recommendation system reflecting user preference was proposed. This system uses Bayesian network to model user preference and analytical hierarchical process to recommend restaurants, but static inference model for user preference used in the system has some limitations that cannot manage changing user preference and enormous user survey must be preceded. This paper proposes a learning method for Bayesian network based on user requests. The proposed method is implemented on mobile devices and desktop, and we show the possibility of the proposed method through experiments.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.229-231
/
2004
추천 시스템은 양질의 정보를 추천하기 위해서 사용자의 관심도를 반영해야 한다. 이를 위해 본 연구에서는 강화학습과 관련 정보, 비관련 정보를 모두 이용하는 피드백 방법을 결합하였다. 사용자의 문서에 대한 평가를 평가 값으로 사용하여 사용자가 선호하는 용어와 선호하지 않는 용어를 추출하고, 이를 이용해 사용자 프로파일을 강화학습으로 학습하게 된다. 제안된 방법으로 신문기사 추천시스템에 적용하여 실험한 결과, 관련 정보와 비관련 정보를 함께 사용한 방범이 기존의 관련 정보안물 사용한 방법보다 더 나은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.