• Title/Summary/Keyword: 사용자 선호도 학습

Search Result 161, Processing Time 0.039 seconds

Multi-perspective User Preference Learning in a Chatting Domain (인터넷 채팅 도메인에서의 감성정보를 이용한 타관점 사용자 선호도 학습 방법)

  • Shin, Wook-Hyun;Jeong, Yoon-Jae;Myaeng, Sung-Hyon;Han, Kyoung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Learning user's preference is a key issue in intelligent system such as personalized service. The study on user preference model has adapted simple user preference model, which determines a set of preferred keywords or topic, and weights to each target. In this paper, we recommend multi-perspective user preference model that factors sentiment information in the model. Based on the topicality and sentimental information processed using natural language processing techniques, it learns a user's preference. To handle timc-variant nature of user preference, user preference is calculated by session, short-term and long term. User evaluation is used to validate the effect of user preference teaming and it shows 86.52%, 86.28%, 87.22% of accuracy for topic interest, keyword interest, and keyword favorableness.

A method for learning users' preference on fuzzy values using neural networks and k-means clustering (신경망과 k-means 클러스터링을 이용한 사용자의 퍼지값 선호도 학습 방법)

  • Yoon, Tae-Bok;Na, Hyun-Jong;Park, Doo-Kyung;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.716-720
    • /
    • 2006
  • Fuzzy sets are good for abstracting and unifying information using natural language like terms. However, fuzzy sets embody vagueness and users may have different attitude to the vagueness, each user may choose difference one as the best among several fuzzy values. In this paper, we develop a method teaming a user's, preference on fuzzy values and select one which fits to his preference. Users' preferences are modeled with artificial neural networks. We gather learning data from users by asking to choose the best from two fuzzy values in several representative cases of comparing two fuzzy sets. In order to establish tile representative comparing cases, we enumerate more than 600 cases and cluster them into several groups. Neural networks ate trained with the users' answer and the given two fuzzy values in each case. Experiments show that the proposed method produces outputs closet to users' preference than other methods.

Personalized EPG Application using Automatic User Preference Learning Method (사용자 선호도 자동 학습 방법을 이용한 개인용 전자 프로그램 가이드 어플리케이션 개발)

  • Lim J;Jeong H;Kang S;Kim M;Kang K
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.151-154
    • /
    • 2004
  • 디지털 방송의 시작과 함께, 지상파, 위성, 케이블과 같은 다양한 매체를 통한 다채널 방송 시청 환경의 도래는 사용자에게 많은 방송 프로그램 시청 정보를 전달하게 되었다. 이와 더불어, 방송 단말에 전송된 다양한 방송 프로그램 정보를 탐색하고 선호 방송 프로그램을 선별하기 위해서는 사용자에게 많은 노력이 요구된다. 이러한 요구에 따라, 똔 논문에서는 다채널 방송 시청 환경 하에서 사용자의 방송 프로그램 시청 히스토리를 분석하고, 특정 시간에 따른 사용자의 방송 프로그램 시청 패턴을 추출하여 방송 프로그램 장르에 대한 사용자 선호도를 자동으로 계산하는 알고리즘을 제안하고, MPEG-7 MDS 구조에 따른 사용자 선호도 서술과 사용자의 선호도에 따라 방송 프로그램을 자동적으로 추천하는 TV 프로그램 추천 어플리케이션을 소개한다 본 실험을 위해 실제 연령대별, 성별, 시간대별로 사용자의 TV 시청 자료를 사용하였으며, 실험결과를 통해 본 논문에 제안된 베이시안 네트워크 기반 사용자 자동 학습 알고리즘이 효과적으로 사용자 선호도를 학습할 수 있음을 확인하였다.

  • PDF

Intelligent Recommendation Agent Based on Ontology (온톨로지 기반의 지능형 추천 에이전트)

  • 조범수;김재원;노상욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.106-108
    • /
    • 2003
  • 최근 들어 인터넷의 급속한 발전으로 사용자가 처리해야할 점보의 양이 급속히 늘어나게 됨으로써 사람이 혼자만의 힘으로 이 많은 정보를 처리하는 것이 하나의 고단한 작업이 되었고, 이 작업을 돕기 위한 소프트웨어 에이전트(software agent) 의 필요성이 대두되었다. 본 논문에서는 구현한 소프트웨어 에이전트가 사용자의 업무보조 (personal assistant) 라는 자신의 임무를 수행하기 위하여 온톨로지(ontology)를 기반으로 사용자의 선호도(preference) 와 의사결정 패턴을 학습하여 사용자 프로파일(user Profile) 을 작성한다. 학습한 프로파일을 바탕으로 사용자의 선호도와 일치하는 제품을 추천하는 지능형 에이전트를 제안하고. 실질적인 실험을 통해 학습된 사용자의 성향을 분석한다.

  • PDF

Recommendation of User Preferred Clothes using Support Vector Machine (Support Vector Machine을 이용한 개인 사용자 선호 의상 추천)

  • Kang, Han-Hoon;Yoo, Seong-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.240-245
    • /
    • 2006
  • 본 논문에서는 의상에 대한 사용자 선호도를 찾아내는 기법에 대하여 기술한다. 의상에 대한 사용자 선호도를 찾기 위해서 의상 데이터에 대해 데이터 모델을 새롭게 제안한다. 이 데이터 모델을 기반으로 사용자의 의상관련 히스토리를 저장한다. 이렇게 저장된 히스토리 정보에 기계 학습 기법 중 최근 각광받고 있는 SVM 기법을 적용하여 사용자 선호도를 찾아내도록 하였다. 이 결과를 다른 학습 기법인 Naive Bayes 기법을 사용하여 의상에 대한 사용자 선호도를 검색한 성능과 비교하여 우리 모델이 더 좋다는 것을 확인하였다. 우리는 5명의 사용자에 대해서 동일한 취향을 갖는 사용자가 몇 명인지에 따라 A(모두 다름), B(2명), C(3명), D(4명), E(모두 같음) 형태별, 사용자별 1000건의 히스토리를 일정한 기준에 따라 생성했다. 그리고 이 중에서 900건을 학습용 데이터, 100건을 검증용 데이터로 선정하여 실험이 진행되었다.

  • PDF

A method for learning a user's preference over fuzzy values using neural network (인공신경망을 이용한 사용자의 퍼지값 선호도 학습방법)

  • Na, Hyun-Jong;Lee, Jee-Hyong
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.287-290
    • /
    • 2003
  • 퍼지값을 크기 순서에 의해 나열하는 연구는 많이 이루어져 왔다. 그러나 기존의 방법들은 퍼지값을 제안된 기준에 의해 독자적으로 해석하여, 비교결과를 산출하는 것이 대부분이다. 본 논문에서는 사용자의 의견 또는 선호도를 반영한 학습데이터를 신경망을 이용하여 학습하는 방법을 제안한다. 이 학습이 끝난 후 얻어지는 신경망은 주어진 학습데이터를 이용하여 사용자의 퍼지값에 대한 모델을 생성하게된다.

  • PDF

Design & Evaluation of an Intelligent Model for Extracting the Web User' Preference (웹 사용자의 선호도 추출을 위한 지능모델 설계 및 평가)

  • Kim, Kwang-Nam;Yoon, Hee-Byung;Kim, Hwa-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.443-450
    • /
    • 2005
  • In this paper, we propose an intelligent model lot extraction of the web user's preference and present the results of evaluation. For this purpose, we analyze shortcomings of current information retrieval engine being used and reflect preference weights on learner. As it doesn't depend on frequency of each word but intelligently learns patterns of user behavior, the mechanism Provides the appropriate set of results about user's questions. Then, we propose the concept of preference trend and its considerations and present an algorithm for extracting preference with examples. Also, we design an intelligent model for extraction of behavior patterns and propose HTML index and process of intelligent learning for preference decision. Finally, we validate the proposed model by comparing estimated results(after applying the Preference) of document ranking measurement.

Learning User Profile with Reinforcement Learning (강화학습 기반 사용자 프로파일 학습)

  • 김영란;한현구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.325-327
    • /
    • 2002
  • 정보검색 태스크에서 사용자 모델링의 목적은 관련정보 검색을 용이하게 해주기 위하여 사용자의 관심도 또는 필요정보의 모델을 학습하는 것으로 시간적인 속성(temporal characteristics)을 가지며 관심 이동을 적절하게 반영하여야 한다. 강화학습은 정답이 주어지지 않고 사용자의 평가만이 수치적으로 주어지는 환경에서 평가를 최대화 한다는 목표를 가지므로 사용자 프로파일 학습에 적용할 수 있다. 본 논문에서는 사용자가 문서에 대해 행하는 일련의 행위를 평가값으로 하여 사용자가 선호하는 용어를 추출한 후, 사용자 프로파일을 강화학습 알고리즘으로 학습하는 방법을 제안한다. 사용자의 선호도에 적응하는 능력을 유지하기 위하여 지역 최대값들을 피할 수 있고, 가장 좋은 장기간 최적정책에 수렴하는 R-Learning을 적용한다. R-learning은 할인된 보상값의 최적화보다 평균 보상값을 최적화하기 때문에 장기적인 사용자 모델링에 적합하다는 것을 제시한다.

  • PDF

User Adaptive Restaurant Recommendation Service in Mobile Environment based on Bayesian Network Learning (베이지안 네트워크의 학습에 기반한 모바일 환경에서의 사용자 적응형 음식점 추천 서비스)

  • Kim, Hee-Taek;Cho, Sung-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.6-10
    • /
    • 2009
  • In these days, recommendation service in mobile environments is in the limelight due to the spread of mobile devices and an increase of information owing to advancement of computer network. The restaurant recommendation system reflecting user preference was proposed. This system uses Bayesian network to model user preference and analytical hierarchical process to recommend restaurants, but static inference model for user preference used in the system has some limitations that cannot manage changing user preference and enormous user survey must be preceded. This paper proposes a learning method for Bayesian network based on user requests. The proposed method is implemented on mobile devices and desktop, and we show the possibility of the proposed method through experiments.

  • PDF

News Article Recommender System By Relevance and Reinforcement Learning (관련성과 강화학습을 이용한 신문기사 추천시스템)

  • 상태종;손기준;박미성;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.229-231
    • /
    • 2004
  • 추천 시스템은 양질의 정보를 추천하기 위해서 사용자의 관심도를 반영해야 한다. 이를 위해 본 연구에서는 강화학습과 관련 정보, 비관련 정보를 모두 이용하는 피드백 방법을 결합하였다. 사용자의 문서에 대한 평가를 평가 값으로 사용하여 사용자가 선호하는 용어와 선호하지 않는 용어를 추출하고, 이를 이용해 사용자 프로파일을 강화학습으로 학습하게 된다. 제안된 방법으로 신문기사 추천시스템에 적용하여 실험한 결과, 관련 정보와 비관련 정보를 함께 사용한 방범이 기존의 관련 정보안물 사용한 방법보다 더 나은 성능을 보였다.

  • PDF