• Title/Summary/Keyword: 사용자 리뷰 분석

Search Result 154, Processing Time 0.028 seconds

A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach (모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석)

  • Soyon Kim;Ji Yeon Cho;Sang-Yeol Park;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 2024
  • This study aims to contribute to the initial research on on-device AI in an environment where generative AI-based services on mobile and other on-device platforms are increasing. To derive success strategies for generative AI-based chatbot services in a mobile environment, over 200,000 actual user experience review data collected from the Google Play Store were analyzed using the LDA topic modeling technique. Interpreting the derived topics based on the Information System Success Model (ISSM), the topics such as tutoring, limitation of response, and hallucination and outdated informaiton were linked to information quality; multimodal service, quality of response, and issues of device interoperability were linked to system quality; inter-device compatibility, utility of the service, quality of premium services, and challenges in account were linked to service quality; and finally, creative collaboration was linked to net benefits. Humanization of generative AI emerged as a new experience factor not explained by the existing model. By explaining specific positive and negative experience dimensions from the user's perspective based on theory, this study suggests directions for future related research and provides strategic insights for companies to improve and supplement their services for successful business operations.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

The Effects of Customer Product Review on Social Presence in Personalized Recommender Systems (개인화 추천시스템에서 고객 제품 리뷰가 사회적 실재감에 미치는 영향)

  • Choi, Jae-Won;Lee, Hong-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.115-130
    • /
    • 2011
  • Many online stores bring features that can build trust in their customers. More so, the number of products or content services on online stores has been increasing rapidly. Hence, personalization on online stores is considered to be an important technology to companies and customers. Recommender systems that provide favorable products and customer product reviews to users are the most commonly used features in this purpose. There are many studies to that investigated the relationship between social presence as an antecedent of trust and provision of recommender systems or customer product reviews. Many online stores have made efforts to increase perceived social presence of their customers through customer reviews, recommender systems, and analyzing associations among products. Primarily because social presence can increase customer trust or reuse intention for online stores. However, there were few studies that investigated the interactions between recommendation type, product type and provision of customer product reviews on social presence. Therefore, one of the purposes of this study is to identify the effects of personalized recommender systems and compare the role of customer reviews with product types. This study performed an experiment to see these interactions. Experimental web pages were developed with $2{\times}2$ factorial setting based on how to provide social presence to users with customer reviews and two product types such as hedonic and utilitarian. The hedonic type was a ringtone chosen from Nate.com while the utilitarian was a TOEIC study aid book selected from Yes24.com. To conduct the experiment, web based experiments were conducted for the participants who have been shopping on the online stores. Participants were a total of 240 and 30% of the participants had the chance of getting the presents. We found out that social presence increased for hedonic products when personalized recommendations were given compared to non.personalized recommendations. Although providing customer reviews for two product types did not significantly increase social presence, provision of customer product reviews for hedonic (ringtone) increased perceived social presence. Otherwise, provision of customer product reviews could not increase social presence when the systems recommend utilitarian products (TOEIC study.aid books). Therefore, it appears that the effects of increasing perceived social presence with customer reviews have a difference for product types. In short, the role of customer reviews could be different based on which product types were considered by customers when they are making a decision related to purchasing on the online stores. Additionally, there were no differences for increasing perceived social presence when providing customer reviews. Our participants might have focused on how recommendations had been provided and what products were recommended because our developed systems were providing recommendations after participants rating their preferences. Thus, the effects of customer reviews could appear more clearly if our participants had actual purchase opportunity for the recommendations. Personalized recommender systems can increase social presence of customers more than nonpersonalized recommender systems by using user preference. Online stores could find out how they can increase perceived social presence and satisfaction of their customers when customers want to find the proper products with recommender systems and customer reviews. In addition, the role of customer reviews of the personalized recommendations can be different based on types of the recommended products. Even if this study conducted two product types such as hedonic and utilitarian, the results revealed that customer reviews for hedonic increased social presence of customers more than customer reviews for utilitarian. Thus, online stores need to consider the role of providing customer reviews with highly personalized information based on their product types when they develop the personalized recommender systems.

Reliable and Effective Overlay Network based Dissemination System for Flash Dissemination (플래쉬 디세미네이션을 위한 안정적이고 효과적인 오버레이 네트워크 기반 전송 시스템)

  • Kim, Kyung Baek
    • Smart Media Journal
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • The significant enhancement of the edge portion of computer networks including user-side machines and last mile network links encourages the research of the overlay network based data dissemination systems. Varieties of overlay network based data dissemination systems has distinct purposes, and each of them has a proper structure of an overlay network and a efficient communication protocol. In this paper, overlay network based data dissemination systems for Flash Dissemination, whose target is the distribution of relatively small size data to very large number of recipients within very short time, are explored. Mainly two systems, RECREW and FaReCAST, are introduced and analyzed in the aspects of design considerations for overlay networks and communication protocols. According to evaluations for flash dissemination scenarios, it is observed that the proposed overlay network based flash dissemination systems outperforms the previous overlay network based multicasting systems, in terms of the reliability and the dissemination delay. Moreover, the theoretical analysis of the reliability of data dissemination is provided by analysing FaReCAST.

  • PDF

A study on the role and policy guidelines of public design in architecture and the built environment (도시건축에서 공공디자인의 사회적 역할과 제도화 방안 -영국 도시건축위원회(CABE)의 사례를 중심으로-)

  • Reigh, Young-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2654-2660
    • /
    • 2010
  • The purpose of this paper is to organize the issues regarding the necessary components of public design in order to provide an outlook of policy guidelines on urban design based on the concept of publicity and user participation. This paper includes an in-depth analysis of CABE in order to suggest communal notions and the values of public design that would enhance the quality of public design. Thus, it can be used as a reference when catalyzing public design regulations and policies in the future. It analyzes the design review and supportive tools for good decision-making of suggested in the CABE case in order to provide an integrated model of public design to overcome the difficulties presented by current approaches of public design. The unity of values, methods, subjects, issues, and places suggested in this paper is the key notion that emphasizes the importance of the integrated model of public design through the cooperation and communication between gents involved in public design process.

Immunosensors for Food Safety: Current Trends and Future Perspectives

  • Daliri, Frank;Aboagye, Agnes Achiaa;Kyei-Baffour, Vincent;Elahi, Fazle;Chelliah, Ramachandran;Daliri, Eric Banan-Mwine
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.509-518
    • /
    • 2019
  • To monitor the levels of antimicrobials, allergens, pathogens and other contaminants in foods meant for human consumption, it is imperative to have quick, accurate and low-cost tests. Advanced techniques (e.g. label-free biosensor assays) have been developed over the past 10-15 years to solve some of these problems. As biosensors, immunosensors can provide real-time measurements, a high degree of automation, and improved throughput and sensitivity. By comparison with conventional methods, immunosensors are less expensive, less sophisticated physicochemical instruments that require less time for analysis while also being more user-friendly. In this review, we discuss our current knowledge about immunosensors, their strengths and weaknesses, as well as the future of these biosensors in food safety.

Online to Offline Convergent Ecosystem: a Case Study of Dianping.com (온라인과 오프라인을 융북합 생태계: Dianping.com 사례연구)

  • Zhang, Chao;Wan, Lili
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.105-111
    • /
    • 2015
  • In this highly competitive century, selling products and service through Internet and smart phones offers both opportunities and challenges. Online commerce is expanding it's wings to the offline market. The connection between online market and offline market is called O2O(Offline to Online) market. In this study we examine the best practice case study of an Internet company's successful efforts to connect users and offline merchants. Based on Dianping.com success story in China, a successful framework for building online to offline ecosystem is examined. Dianping.com successful experience may provide suggestions for other online companies operate in the convergent field.

Travel Route Recommendation Utilizing Social Big Data

  • Yu, Yang Woo;Kim, Seong Hyuck;Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2022
  • Recently, as users' interest for travel increases, research on a travel route recommendation service that replaces the cumbersome task of planning a travel itinerary with automatic scheduling has been actively conducted. The most important and common goal of the itinerary recommendations is to provide the shortest route including popular tour spots near the travel destination. A number of existing studies focused on providing personalized travel schedules, where there was a problem that a survey was required when there were no travel route histories or SNS reviews of users. In addition, implementation issues that need to be considered when calculating the shortest path were not clearly pointed out. Regarding this, this paper presents a quantified method to find out popular tourist destinations using social big data, and discusses problems that may occur when applying the shortest path algorithm and a heuristic algorithm to solve it. To verify the proposed method, 63,000 places information was collected from the Gyeongnam province and big data analysis was performed for the places, and it was confirmed through experiments that the proposed heuristic scheduling algorithm can provide a timely response over the real data.

Methodology for Deriving Required Quality of Product Using Analysis of Customer Reviews (사용자 리뷰 분석을 통한 제품 요구품질 도출 방법론)

  • Yerin Yu;Jeongeun Byun;Kuk Jin Bae;Sumin Seo;Younha Kim;Namgyu Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.2
    • /
    • pp.1-18
    • /
    • 2023
  • Recently, as technology development has accelerated and product life cycles have been shortened, it is necessary to derive key product features from customers in the R&D planning and evaluation stage. More companies want differentiated competitiveness by providing consumer-tailored products based on big data and artificial intelligence technology. To achieve this, the need to correctly grasp the required quality, which is a requirement of consumers, is increasing. However, the existing methods are centered on suppliers or domain experts, so there is a gap from the actual perspective of consumers. In other words, product attributes were defined by suppliers or field experts, but this may not consider consumers' actual perspective. Accordingly, the demand for deriving the product's main attributes through reviews containing consumers' perspectives has recently increased. Therefore, we propose a review data analysis-based required quality methodology containing customer requirements. Specifically, a pre-training language model with a good understanding of Korean reviews was established, consumer intent was correctly identified, and key contents were extracted from the review through a combination of KeyBERT and topic modeling to derive the required quality for each product. RevBERT, a Korean review domain-specific pre-training language model, was established through further pre-training. By comparing the existing pre-training language model KcBERT, we confirmed that RevBERT had a deeper understanding of customer reviews. In addition, all processes other than that of selecting the required quality were linked to the automation process, resulting in the automation of deriving the required quality based on data.

An Emotion Scanning System on Text Documents (텍스트 문서 기반의 감성 인식 시스템)

  • Kim, Myung-Kyu;Kim, Jung-Ho;Cha, Myung-Hoon;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.433-442
    • /
    • 2009
  • People are tending to buy products through the Internet rather than purchasing them from the store. Some of the consumers give their feedback on line such as reviews, replies, comments, and blogs after they purchased the products. People are also likely to get some information through the Internet. Therefore, companies and public institutes have been facing this situation where they need to collect and analyze reviews or public opinions for them because many consumers are interested in other's opinions when they are about to make a purchase. However, most of the people's reviews on web site are too numerous, short and redundant. Under these circumstances, the emotion scanning system of text documents on the web is rising to the surface. Extracting writer's opinions or subjective ideas from text exists labeled words like GI(General Inquirer) and LKB(Lexical Knowledge base of near synonym difference) in English, however Korean language is not provided yet. In this paper, we labeled positive, negative, and neutral attribute at 4 POS(part of speech) which are noun, adjective, verb, and adverb in Korean dictionary. We extract construction patterns of emotional words and relationships among words in sentences from a large training set, and learned them. Based on this knowledge, comments and reviews regarding products are classified into two classes polarities with positive and negative using SO-PMI, which found the optimal condition from a combination of 4 POS. Lastly, in the design of the system, a flexible user interface is designed to add or edit the emotional words, the construction patterns related to emotions, and relationships among the words.

  • PDF