• Title/Summary/Keyword: 사용자 기반 협력필터링

Search Result 82, Processing Time 0.021 seconds

Recommendation Method using Naive Bayesian algorithm in Hybrid User and Item based Collaborative Filtering (사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법)

  • 김용집;정경용;한승진;고종철;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.184-186
    • /
    • 2003
  • 기존의 사용자 기반 협력적 필터링이 가지는 단점으로 지적되었던 희박성과 확장성의 문제를 아이템 기반 협력적 필터링 기법을 통하여 개선하려는 연구가 진행되어 왔다. 실제로 많은 성과가 있었지만. 여전히 명시적 데이터를 기반으로 하기 때문에 희박성이 존재하며, 아이템의 속성이 반영되지 않는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협력적 필터링의 문제점을 보완하기 위하여 사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법을 제안한다. 제안된 방법에서는 각 사용자와 아이템에 대한 유사도 검색 테이블을 생성한 후, Naive Bayesian 알고리즘으로 아이템을 예측 및 추천함으로써, 성능을 개선하였다. 성능 평가를 위해 기존의 아이템 기반 협력적 필터링 기술과 비교 평가하였다.

  • PDF

A Collaborative Filtering Approach using User Profile (사용자 프로파일 정보를 고려한 협력 필터링)

  • Kim, Byung-Man;Lee, Kyung;Park, Chang-Seok;Kim, Si-Kwan;Kim, Ju-Yeon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.286-288
    • /
    • 2002
  • 엄청난 속도로 증가하고 있는 정보의 홍수 시대에서는 정보들을 선별하기 위하여 정보 필터링 기법이 필요하다. 정보 필터링은 내용 기반 방법과 협력에 의한 방법으로 분류할 수 있다. 내용 기반 기법에서는 내용에 기반을 두어 정보를 추출하는 반면 협력 기법은 대상이 되는 사용자에 대한 예측을 하기 위하여 다른 사람들의 의견들을 이용하게 된다. 본 논문에서는 기존 협력 필터링 방법의 문제점을 해결하기 위한 방법의 일환으로 내용 기반 기법과 협력 기법을 보다 유기적으로 결합시키는 연구를 수행하였다. 이를 위해 협력 필터링 틀을 그대로 유지하면서 사용자 프로파일을 효과적으로 이용하는 방법을 제안하였다. 또한, 본 논문에서 제시한 기법을 실험적으로 분석하고 기존의 필터링 기법과 비교함으로써 제시된 기법의 우수성을 보였다.

  • PDF

A Study on Collaborative Filtering Recommendation Algorithm base on Hadoop and Spark (하둡 및 스파크 기반의 협력 필터링 추천 알고리즘 연구)

  • Jung, Young Gyo;Kim, Sang Young;Lee, Jung-June;Youn, Hee Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.81-82
    • /
    • 2016
  • 최근 사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해주는 추천 시스템은 협력 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천 시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 협력 필터링 알고리즘을 클러스터링 기반으로 분산 환경에서 구현하여, 추천의 효과를 최적화 하는 기법을 제안하며 하둡 및 스파크 기반으로 시스템을 구성하여 협력 필터링 추천 알고리즘을 비교 하였다.

  • PDF

Collaborative Filtering Model Analysis based on IPTV Viewing Log (IPTV 시청자의 시청이력에 기반한 협력필터링 모델 분석)

  • Jung, Ha-Yong;Kim, Moon-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.404-409
    • /
    • 2010
  • 협력 필터링(Collaborative Filtering)은 상품추천, 영화추천 등에 사용되는 대표적인 방법으로서, 사용자들의 사용이력에 기반해서 유사도가 높은 항목들을 찾아낸다. 본 연구에서는 상용 IPTV 서비스에 협력 필터링을 적용했을 때 만들어지는 모델을 분석하여 어떤 요소들이 협력 필터링 모델의 생성에 영향을 끼치는지 분석했다. 이를 통해 IPTV 영역에 협력 필터링을 적용했을 때 영향을 끼치는 요소들과 다른 영역과는 다르게 고려해야 할 사항들을 알 수 있었다.

  • PDF

Personalized Recommender System Using Information Filtering (정보 필터링을 사용한 개인화된 추천시스템)

  • Kwak, Mi-Ra;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2807-2809
    • /
    • 2001
  • 본 논문에서는 웹기반 쇼핑몰에서 사용자들에게 새로운 상품을 추천하는 시스템을 제안한다. 추천시스템이란 사용자의 필요와 취향을 고려하여 그에게 적합한 새로운 상품이나 대신할만한 상품 등을 추천하는 시스템이다. 지금까지 제안된 대부분의 추천시스템들은 협력적인 필터링 기법을 쓰고 있는데, 이러한 시스템의 경우 사용자들의 선호도 점수 정보가 부족하면 정확한 추천결과를 기대할 수 없다. 본 논문에서는 내용기반 필터링 기법을 협력적 필터링 기법과 함께 사용하여 이와 같은 문제를 해결하고자 한다.

  • PDF

Fiber Fashion Design Recommender Agent System using the Prediction of User-Preference and Textile based Collaborative Filtering Technique (사용자 선호도 예측과 Textile 기반의 협력적 필터링 기술을 이용한 섬유패션 디자인 추천 에이전트)

  • 정경용;김진현;나영주
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.224-228
    • /
    • 2002
  • 제품의 품질 및 가격 뿐만 아니라 물질적 풍요로움과 더불어 다변화 되어가는 생활 환경 속에서 소비자의 감성과 선호도를 파악하는 것은 제품 판매 전략의 중요한 성공요소가 되고 있다. 이를 위하여 제품의 기능적 측면 뿐만 아니라 개개인의 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 연구에서는 소재 개발의 프로세스가 고객 중심으로 변화하는 것에 대응하여 사용자의 감성과 선호도를 중심으로 소재를 개발하는 방법의 하나로 협력적 필터링 개인화 기법을 응용하여 섬유 패션 디자인 추천 시스템을 제안한다. Textile 기반의 협력적 필터링 시스템에서 예측에 사용될 이웃의 수를 결정하기 위해서 Representative Attribute-Neighborhood를 사용한다. 이웃들간의 사용자 유사도 가중치는 피어슨 상관 계수(Pearson Correlation Coefficient)를 사용한다. 소재에 대한 사용자의 감성이나 선호도에 대한 Textile의 대표 감성 형용사를 추출함으로써 소재 개발을 위한 감성 형용사 데이터 베이스를 구축한다. 구축된 감성 형용사 데이터 베이스를 기반으로 성향이 비슷한 사용자에게 Textile을 추천한다. 사용자 선호도 예측과 Textile 기반의 협력적 필터링 기술을 이용한 섬유 패션 디자인 추천 에이전트를 구축하여 시스템의 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.

  • PDF

A New Approach Combining Content-based Filtering and Collaborative Filtering for Recommender Systems (추천시스템을 위한 내용기반 필터링과 협력필터링의 새로운 결합 기법)

  • Kim, Byeong-Man;Li, Qing;Kim, Si-Gwan;Lim, En-Ki;Kim, Ju-Yeon
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.332-342
    • /
    • 2004
  • With the explosive growth of information in our real life, information filtering is quickly becoming a popular technique for reducing information overload. Information filtering technique is divided into two categories: content-based filtering and collaborative filtering (or social filtering). Content-based filtering selects the information based on contents; while collaborative filtering combines the opinions of other persons to make a prediction for the target user. In this paper, we describe a new filtering approach that seamlessly combines content-based filtering and collaborative filtering to take advantages from both of them, where a technique using user profiles efficiently on the collaborative filtering framework is introduced to predict a user's preference. The proposed approach is experimentally evaluated and compared to conventional filtering. Our experiments showed that the proposed approach not only achieved significant improvement in prediction quality, but also dealt with new users well.

A New Similarity Measure using Fuzzy Logic for User-based Collaborative Filtering (사용자 기반의 협력필터링을 위한 퍼지 논리를 이용한 새로운 유사도 척도)

  • Lee, Soojung
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.5
    • /
    • pp.61-68
    • /
    • 2018
  • Collaborative filtering is a fundamental technique implemented in many commercial recommender systems and provides a successful service to online users. This technique recommends items by referring to other users who have similar rating records to the current user. Hence, similarity measures critically affect the system performance. This study addresses problems of previous similarity measures and suggests a new similarity measure. The proposed measure reflects the subjectivity or vagueness of user ratings and the users' rating behavior by using fuzzy logic. We conduct experimental studies for performance evaluation, whose results show that the proposed measure demonstrates outstanding performance improvements in terms of prediction accuracy and recommendation accuracy.

Collaborative Filtering using User Profiles Informal ion and Real-Time Context Information (사용자 프로파일 정보와 실시간 컨텍스트 정보를 이용한 협력적 필터링)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.336-339
    • /
    • 2006
  • 추천시스템에서 가장 많이 사용하고 있는 협력적 필터링 방법을 모바일 기기 등에서 사용하려면 추천 정보와 사용자들의 평가 정보가 부족하여 추천의 질이 떨어지게 된다. 이러한 문제를 해결하기 위해 실시간으로 얻어진 컨텍스트 정보를 정량화하여 협력적 필터링에 적용함으로써 보다 나은 추천 결과를 얻을 수 있었다. 그럼에도 불구하고 평가를 하기 위한 컨텍스트 정보가 충분하지 못한 경우 부정확한 결과를 가져올 수 있다. 또한 사용자 정보 평가 과정 중 정량화 단계의 분류 과정을 단순히 하게 되면 서비스 받는 사용자가 정확한 그룹에 분류되어 정확도가 결여되는 문제가 발생한다. 본 논문에서는 실시간으로 얻을 수 있는 컨텍스트 정보가 부족한 경우, 내용 기반 필터링에서 많이 사용하고 있는 사용자 프로파일 정보를 실시간 컨텍스트 정보와 결합한다. 그리고 정량화 단계를 개선하여 협력적 필터링함으로써 기존의 방법보다 향상된 결과를 얻을 수 있다.

  • PDF

A New Collaborative Filtering Method for Movie Recommendation Using Genre Interest (영화 추천을 위한 장르 흥미도를 이용한 새로운 협력 필터링 방식)

  • Lee, Soojung
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.329-335
    • /
    • 2014
  • Collaborative filtering has been popular in commercial recommender systems, as it successfully implements social behavior of customers by suggesting items that might fit to the interests of a user. So far, most common method to find proper items for recommendation is by searching for similar users and consulting their ratings. This paper suggests a new similarity measure for movie recommendation that is based on genre interest, instead of differences between ratings made by two users as in previous similarity measures. From extensive experiments, the proposed measure is proved to perform significantly better than classic similarity measures in terms of both prediction and recommendation qualities.