• Title/Summary/Keyword: 사용자 관심도

Search Result 2,450, Processing Time 0.027 seconds

Extracting Method of User's Interests by Using SNS Follower's Relationship and Sequential Pattern Evaluation Indices for Keyword (키워드를 위한 시퀀셜 패턴 평가 지표와 SNS 팔로워의 관계를 이용한 사용자 관심사항 추출방법)

  • Shin, Bong-Hi;Jeon, Hye-Kyoung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.71-75
    • /
    • 2017
  • Due to the spread of SNS, web-based consumer-generated data is increasing exponentially. It is important in many fields to accurately extract what is appropriate for the user's interest in a large amount of data. It is especially important for business mangers to establish marketing policies to find the right customers for them in many users. In this paper, we try to obtain important information centering on customers who are interested in each account through Twitter follow - following relationship. Because Twitter's current follower relationships do not reflect the user's interests, we try to figure out the details of interest using keyword extraction methods for tweets of followers. To do this, we select two domestic commercial Twitter accounts and apply the sequential pattern evaluation index to the mining key phrase of the text data collected from the follower.

3D world space recognition system using stereo camera (스테레오 카메라를 이용한 3차원 공간 인식 시스템)

  • Lee, Dong-Seok;Kim, Su-Dong;Lee, Dong-Wook;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.215-218
    • /
    • 2008
  • 본 논문에서는 스테레오 카메라로부터 획득된 좌, 우 영상의 변이를 추정하여 3차원 공간 좌표(x, y, z)를 얻어내고, 거리측정과 가상공간 제어를 통해 사용자에게 현실감을 제공하는 실시간 3차원 공간 인식 시스템을 제안한다. 스테레오 카메라로 부터 획득된 좌, 우 영상은 시점의 차이 때문에 동일 물체에 대한 좌, 우 영상의 좌표 값의 차이를 발생시키는 데 이를 변이(disparity)라 정의한다. 관심 영역의 변이를 추정할 때 일반적으로 관심 영역의 모든 화소(pixel)의 변이를 추정하지만, 제안한 알고리즘에서는 관심 영역의 2차원 중심 좌표(x, y)의 변이만을 추정하여 계산량을 줄이고 실시간 처리가 가능하도록 하였다. 카메라 파라미터를 이용하여 획득된 변이로부터 깊이 정보(depth)를 얻어내고 3차원 공간 좌표를 획득한다. 손을 관심 영역으로 설정한 시스템에서 3차원 공간 좌표는 실시간으로 사용자의 손의 움직임에 의해 획득되고, 가상공간(virtual space)에 적용되어 사용자가 가상공간을 조작할 수 있는 듯한 느낌을 준다. 실험을 통해 제안한 알고리즘이 1.5m 거리 내에서의 깊이 측정시 평균 0.68cm의 오차를 가짐을 확인 할 수 있었다.

  • PDF

A Method for Converting OSEM to OWL and Recommending Interest Blog Communities (온톨로지 기반 시맨틱 블로그 모델의 OWL 변환 및 관심 블로그 커뮤니티 추천 기법)

  • Xu, Rong-Hua;Yang, Kyung-Ah;Yang, Jae-Dong;Choi, Wan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.385-389
    • /
    • 2009
  • As a new community forming environment, the blog platform enables sharing of the resources in blogosphere through active information exchange. Many researches have been performed to recommend appropriate resources to users from vast amounts of blog resources. As one of the solutions OSEM defines the knowledge base in the blogosphere with ontology for effectively modeling it. In this paper, we propose a technique of converting the knowledge base into the OWL ontology for sharing it on the semantic web environment. An inference method is then applied to the OWL ontology for recommending interest blog communities. For this aim, a mapping method is offered and then SWRL inference and SPARQL query based on the ontology are employed to extract interest blog communities.

Automatic TV Recommendation based on collaborative filtered Latent Topic (협업 필터링 Latent Topic기반 Automatic TV Recommendation)

  • Kim, EunHui;Pyo, Shinjee;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.62-65
    • /
    • 2011
  • 최근 화두가 되고 있는 스마트 폰 앱의 관심으로 스마트 TV의 앱에 대한 관심도 함께 증가하고 있다. TV시청 이용자들의 편의를 위해 증가하고 있는 수많은 채널과 콘텐츠 중, 개인 사용자의 이용 습관 및 대중의 선호 프로그램을 고려하여, 편리하게 원하는 TV프로그램에 접근하도록 해 주는 TV 앱이 있다면 이는 매우 중요한 기능으로 자리 잡을 가능성이 높을 것으로 예상된다. 이에 본 논문은 사용자의 시청 이용행태를 기반으로 주제모델링 기술의 고전적 모델인 LDA을 기반으로 협업필터링을 결합한 TV 선호 프로그램 추천 알고리듬을 제안한다. 개인의 관심 선호도는 일반적으로 특정 개수로 한정지어지는 특성을 고려하여, 개인 선호도 특성이 구별 되도록 두 가지 방법을 적용하였다. 하나는 개인 선호도 프로파일의 특정 상위 주제만을 고려하는 것이고, 또 다른 하나는 개인별 주제에 대한 선호도의 다양성이 드러나도록 비대칭 하이퍼-파라미터를 갖는 LDA를 사용 하였다. 실험 결과, 두 가지 방식에 대해 사용자의 실제 TV시청 이용내역 데이터를 기반으로 추천 성능의 향상을 평균 Precision 값을 측정하여 확인하였다. 또한, 본 논문에서는 주제 모델링을 통해 학습된 각 주제의 상위 확률의 TV 프로그램들을 분석한 결과, 하나의 주제가 개인별 시청의 특성 보다는 가족단위의 시청 특성을 드러냄을 확인할 수 있었다.

  • PDF

An Analysis Method of User Preference by using Web Usage Data in User Device (사용자 기기에서 이용한 웹 데이터 분석을 통한 사용자 취향 분석 방법)

  • Lee, Seung-Hwa;Choi, Hyoung-Kee;Lee, Eun-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.189-199
    • /
    • 2009
  • The amount of information on the Web is explosively growing as the Internet gains in popularity. However, only a small portion of the information on the Web is truly relevant or useful to the user. Thus, offering suitable information according to user demand is an important subject in information retrieval. In e-commerce, the recommender system is essential to revitalize commercial transactions, raise user satisfaction and loyalty towards the information provider. The existing recommender systems are mostly based on user data collected at servers, so user data are dispersed over several servers. Therefore, web servers that lack sufficient user behavior data cannot easily infer user preferences. Also, if the user visits the server infrequently, it may be hard to reflect the dynamically changing user's interest. This paper proposes a novel personalization system analyzing the user preference based on web documents that are accessed by the user on a user device. The system also identifies non-content blocks appearing repeatedly in the dynamically generated web documents, and adds weight to the keywords extracted from the hyperlink sentence selected by the user. Therefore, the system establishes at an early stage recommendation strategies for the web server that has little user data. Also, user profiles are generated rapidly and more accurately by identifying the information blocks. In order to evaluate the proposed system, this study collected web data and purchase history from users who have current purchase activity. Then, we computed the similarity between purchase data and the user profile. We confirm the accuracy of the generated user profile since the web page containing the purchased item has higher correlation than other item pages.

MyNews : Personalized XML Document Transcoding Technique for Mobile Device Users (MyNews : 모바일 환경에서 사용자 관심사를 고려한 XML 문서 트랜스코딩)

  • Song Teuk-Seob;Lee Jin-Sang;Lee Kyong-Ho;Sohn Won-Sung;Ko Seung-Kyu;Choy Yoon-Chul;Lim Soon-Bum
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.181-190
    • /
    • 2005
  • Developing wireless internet service and mobile devices, mechanisms for web service across are various. However, the existing web infrastructure and content were designed for desktop computers and arc not well-suited for other types of accesses, e.g. PDA or mobile Phone that have less processing power and memory, small screens, limited input facilities, or network bandwidth etc. Thus, there is a growing need for transcoding techniques that provide that ability to browse the web through mobile devices. However, previous researches on existing web contents transcoding are service provider centric, which does not accurately reflect the user's continuously changing interest. In this paper, we presents a transcoding technique involved in making existing news contents based on XML available via customized wireless service, mobile phone.

K-Nearest Interest Management in Onlina Game Server (온라인 게임서버에서의 k-최근접 관심영역 관리기법)

  • 박일규;심광현;김종성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.547-549
    • /
    • 2001
  • 대규모 온라인 게임과 같이 수많은 사용자를 수용하는 클라이언트/서버 방식 응용에서는 네트워크의 대역폭을 효율적으로 사용하는 것이 중요하다. 각 클라이언트의 관심영역에 해당하는 데이터만을 보내어 트래픽을 줄이는 방법을 관심영역 관리라 하며, 클래스기반, 영역 기반, 격자기반 등 여러 가지의 방법이 제안되어 있다. 본 논문에서는 작은 영역에서 거리 기반으로 관심영역을 정하는 관심영역 관리 기법을 제안하고, 이를 이용하여 참가자가 편중된 영역에서 생기는 트래픽 집중 현상을 해소하는 방법을 제안한다.

  • PDF

Personalized Web Search using Query based User Profile (질의기반 사용자 프로파일을 이용하는 개인화 웹 검색)

  • Yoon, Sung Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.690-696
    • /
    • 2016
  • Search engines that rely on morphological matching of user query and web document content do not support individual interests. This research proposes a personalized web search scheme that returns the results that reflect the users' query intent and personal preferences. The performance of the personalized search depends on using an effective user profiling strategy to accurately capture the users' personal interests. In this study, the user profiles are the databases of topic words and customized weights based on the recent user queries and the frequency of topic words in click history. To determine the precise meaning of ambiguous queries and topic words, this strategy uses WordNet to calculate the semantic relatedness to words in the user profile. The experiments were conducted by installing a query expansion and re-ranking modules on the general web search systems. The results showed that this method has 92% precision and 82% recall in the top 10 search results, proving the enhanced performance.

Social Category based Recommendation Method (소셜 카테고리를 이용한 추천 방법)

  • Yoo, So-Yeop;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.73-82
    • /
    • 2014
  • SNS becomes a recent issue, and many researches in various kinds of field are being done by taking advantage of it. Especially, there are many researches existed on the system that finds user's interest and makes recommendation based on multiple social data generated on the SNS. User's interest is not only revealed from the user's writing but also from the user's relationship with friends. This study proposes a recommendation method that extracts user's interest by using social relationship and its categorization applies it to the recommendation. In this way, it can recommend user's interest with category based on the writings by the user and furthermore it can apply the user's relationship with his/her friends for more accurate recommendation. In addition, if necessary, the recommendation can be made by extracting any interest shared between the user and specific friends. Through experiments, we show that our method using social category can produce satisfactory result.

A study on the Elements of Interest for VR Game Users Using Text Mining and Text Network Analysis - Focused on STEAM User Review Data - (텍스트마이닝과 네트워크 분석을 적용한 VR 게임 사용자의 관심 요소 연구 - STEAM 사용자 리뷰 데이터를 중심으로 -)

  • Wui, Min-Young;Na, Ji Young;Park, Young Il
    • Journal of Korea Game Society
    • /
    • v.18 no.6
    • /
    • pp.69-82
    • /
    • 2018
  • The need of high quality VR contents has been steadily raised in recent years. Therefore, this study investigated the user's interest factors of VR game which is receiving the most attention among VR contents. We used STEAM review data and applied Text mining and Network analysis to perform this research. As a result, it was possible to confirm 4 word clusters related VR game users. Each cluster is named by 'presence', 'first person view game', 'auditory factor' and 'interaction'. This study has its meaning. First, user related research would be very helpful to develop high quality VR game. Second, it confirms that review data of VR game users can be structured, analyzed and used.