• Title/Summary/Keyword: 사용자 감성

Search Result 843, Processing Time 0.02 seconds

Analysis of the Landscape Characteristics of Island Tourist Site Using Big Data - Based on Bakji and Banwol-do, Shinan-gun - (빅데이터를 활용한 섬 관광지의 경관 특성 분석 - 신안군 박지·반월도를 대상으로 -)

  • Do, Jee-Yoon;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.61-73
    • /
    • 2021
  • This study aimed to identify the landscape perception and landscape characteristics of users by utilizing SNS data generated by their experiences. Therefore, how to recognize the main places and scenery appearing on the island, and what are the characteristics of the main scenery were analyzed using online text data and photo data. Text data are text mining and network structural analysis, while photographic data are landscape identification models and color analysis. As a result of the study, First, as a result of frequency analysis of Bakji·Banwol-do topics, we were able to derive keywords for local landscapes such as 'Purple Bridge', 'Doori Village', and location, behavior, and landscape images by analyzing them simultaneously. Second, the network structure analysis showed that the connection between key and undrawn keywords could be more specifically analyzed, indicating that creating landscapes using colors is affecting regional activation. Third, after analyzing the landscape identification model, it was found that artificial elements would be excluded to create preferred landscapes using the main targets of "Purple Bridge" and "Doori Village", and that it would be effective to set a view point of the sea and sky. Fourth, Bakji·Banwol-do were the first islands to be created under the theme of color, and the colors used in artificial facilities were similar to the surrounding environment, and were harmonized with contrasting lighting and saturation values. This study used online data uploaded directly by visitors in the landscape field to identify users' perceptions and objects of the landscape. Furthermore, the use of both text and photographic data to identify landscape recognition and characteristics is significant in that they can specifically identify which landscape and resources they prefer and perceive. In addition, the use of quantitative big data analysis and qualitative landscape identification models in identifying visitors' perceptions of local landscapes will help them understand the landscape more specifically through discussions based on results.

Analysis of Language Message Expression in Beauty Magazine's Cosmetic Ads : Focusing on "Hyang-jang", AMOREPACIFIC's from 1958 to 2018 (화장품광고에 나타난 언어메시지 표현분석 : 1958년~2018년의 아모레퍼시픽 뷰티매거진<향장>을 중심으로)

  • Choi, Eun-Sob
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.99-118
    • /
    • 2019
  • This study confirmed the followings based on analysis of language messages in 718 advertisement in , AMOREPACIFIC's beauty magazine, published from 1958 to 2018 by product categories, era, in terms of purchase information, persuasive expression, word type. First, the number of pieces among 1980s to 1990s advertisement were the largest and, in terms of product categories, there were the greatest number of pieces in skincare, makeup and mens products. Second, headline and bodycopy had a different aspect in persuasive expression. "focused on image-making" was mainly used for head lines. Specifically, "situational image" was generally dominant. While the "user image" was higher before 1990's, "brand image" was as recent times. "Informal" was mostly applied for bodycopies, especially, "general information" and "differentiated information" was used the most. It is important to know what kind of information the brand established in each brand should be embodied rather than simply dividing the appeal method into "rational appeal" and "emotional appeal."Third, persuasive expression has different aspects in headlines and body copies. "focused on image-making" was mainly used as headlines. Specifically, "situational image" is dominant. Also, "user image" was high before 1990s but "brand image" got higher in recent times. "Informal" was mostly used as body copies, especially "general information" and "differentiated information" were the most frequently selected. Therefore, it is important to apprehend which information to specify established images by brands, rather than to divide "rational appeals" and "emotional appeals". Lastly, categorizing word type into brand names and headlines, foreign language was the most dominant in brand names and Chinese characters in headline. Remarkably, brand names in native language temporarily high in 70's and 80's, which could be interpreted to be resulted from the government policy promoting native language brands in those times. In addition, foreign language was frequently used in cosmetics and Chinese characters in men's product. It could be explained that colors or seasons in cosmetic products were expressed in foreign language in most case. On the other hand, the inclination of men's product consumers, where they pursue prestige or confidence in Chinese character, was actively reflected to language messages.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.