• Title/Summary/Keyword: 사용자행동패턴

Search Result 223, Processing Time 0.028 seconds

Efficient Mining of User Behavior patterns by classification of age based on location information (위치에 따른 연령대별 유용한 행동패턴 추출 기법)

  • Kim, HyeRan;Lee, SeungCheol;Kim, UngMo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.250-253
    • /
    • 2007
  • 통신기술의 발달로 무선단말기의 보급이 급증하고 무선 네트워크 사용이 일반화됨으로써, 최근 유비쿼터스 컴퓨팅 기술이 중요한 이슈가 되고 있다. 유비쿼터스 컴퓨팅은 시간과 장소의 한계를 넘어 사용자가 하고자 하는 일을 컴퓨팅 환경이 상황을 인지하여 돕는 것을 가능하게 한다. 상황인지를 위해 순차패턴과 시간 연관규칙 탐사를 이용하여 사용자의 행동패턴을 추출하는 연구가 활발히 진행되고 있다. 이러한 연구를 통한 행동패턴은 사용자의 특성을 간과하게 되며, 각 사용자에게 더욱 유용한 서비스를 제공하기 위해서는 사용자를 분류하는 것이 필요하다. 그러나 기존의 연구는 단지 통계적인 사용자의 빈발 행동패턴만을 추출하여 각 사용자의 관심사와는 무관한 서비스 제공이 이루어질 수 있다. 성별, 나이, 직업 등의 개인정보와 위치를 고려하여 사용자에게 더욱 더 효율적이고 유용한 서비스를 제공할 수 있도록 행동패턴을 유형별로 분류할 필요가 있다. 본 논문에서는 각 위치에 따른 사용자의 연령대별 유용한 행동패턴을 추출하여 정확한 서비스를 제공할 수 있는 마이닝 기법을 제안한다.

Prediction of User Activity based on Mobile Life-log using Dynamic Bayesian Network (동적 베이지안 네트워크를 이용한 모바일 라이프로그 기반 사용자 행동 예측)

  • Han-Saem Park;Sung-Bae Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.60-63
    • /
    • 2008
  • 개인화 장비 기술의 발달과 함께 최근 모바일 디바이스는 카메라, MP3 플레이어 등 다양한 기능을 포함하고 있으며, 많은 사용자가 이를 사용하고 있다. 모바일 디바이스는 사용자가 항상 휴대하기 때문에 사용자 정보를 습득하기에 유용하며 따라서 이로부터 수집된 다양한 정보를 바탕으로 최근 여러가지 서비스를 제공하기 위한 노력이 이루어지고 있다. 본 논문에서는 사용자의 모바일 로그를 바탕으로 행동 패턴을 파악하여 사용자가 앞으로 취할 행동을 예측하고자 하며, 이 과정에서 다양한 행동 패턴 중 정확한 행동 예측을 수행하기 위해 다음과 같은 방법을 활용하였다. 장소, 시간, 요일 정보를 함께 사용하여 동적 베이지안 네트워크를 이용해 시간 변화에 따른 사용자 행동 패턴을 학습하였으며, 개인 사용자 모델과 전체 사용자 모델을 따로 학습함으로써 더 정확한 행동 패턴의 학습이 가능하도록 하였다. 실험을 위해 대학생들로부터 수집된 모바일 로그를 통해 제안하는 행동 예측 모델의 성능을 확인한 결과 77~94%의 예측 정확도를 보임을 확인하였다.

Pattern Validation using Temporal Logic for Fraud Detection (부정행위 탐색을 위한 시간 논리 기반의 패턴 유효성 검사 방법)

  • 이건수;김민구;이형수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.148-150
    • /
    • 2004
  • 부정행위 탐지는 개별 사용자의 행동 기록과 그 사용자와 유사한 프로필을 갖고 있는 사용자들의 행동 기록을 바탕으로 행동 패턴 혹은 행동 규칙을 찾아내, 이 패턴/규칙과의 비교를 통해 현재 행위가 부정한 것인지를 결정하는 방법을 주로 사용한다. 그러나, 특정 사용자의 행위패턴이 급격하게 바뀌는 경우, 과거의 기록을 바탕으로 생성된 패턴의 유효성은 보장받을 수 없다. 더구나 기존 기록과 상이한 행위에 대한 새로운 패턴이 생성되기 위해서는 계속해서 그런 행위가 쌓여야만 하고, 그 쌓이는 양은 기존 패턴의 견고성에 비례된다. 또한 동일 사용자에게 털러 패턴을 적용시키는 방법 역시 패턴간의 충돌이 일어나는 등의 한계가 존재한다. 본 논문에서는 시간 논리(Temporal Logic)를 적용하여, 과거의 패턴의 유효성을 검증하고 신규패턴을 빠르게 찾아내는 방법을 제안하고자 한다.

  • PDF

Customized Speech Synthesis for Children with Characteristic Behavioral Patterns (어린이 행동 패턴에 기반한 개별화된 음성 합성)

  • Lee, Ho-Joon;Park, Jong-C.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.571-578
    • /
    • 2006
  • 음성을 통한 사용자 간의 정보 교환 방법은 추가적인 훈련 과정이나 장비가 필요하지 않고 공간 제약이 거의 없기 때문에 노약자 등 사용자의 연령대에 관계없이 사용될 수 있다. 또한 음성 정보는 시각이나 촉각 등 다른 정보 수단과의 상호 작용으로 상승 효과를 유발할 수 있기 때문에 사람과 기계 사이의 인터페이스로 활용될 경우 정보 전달력을 높이면서 사용자 친화적인 서비스를 제공할 수 있다. 그러나 동일한 상황에서 동일한 유형의 음성 정보가 사용자에게 지속적으로 제공될 경우 표현상의 단조로움으로 인해 정보 전달력이 급감할 수 있는 문제점도 지니고 있다. 따라서 음성을 통한 정보 전달의 경우 동일 상황이라 하더라도 사용자의 행동 패턴, 심리 상태, 주변 환경 등에 따라 차별화된 문장 구조 및 어휘의 선택으로 긴장감을 유지시켜 줄 수 있어야 한다. 본 논문에서는 5 세 전후의 어린이를 대상으로 그들의 행동 패턴 분석에 기반하여 개별화된 음성 합성 결과를 제공하는 시스템을 제안한다. 이를 위해 유치원이라는 물리적 공간에서 어린이들의 주된 행동 패턴을 분석하고, 현직 유치원 교사를 대상으로 동일한 정보를 전달하는 조건을 통하여 어린이의 행동 패턴과 위치 정보, 연령 및 성격에 따른 발화 문장의 문장 구조와 어휘적 특성을 파악한다. 최종적으로, 개별화된 음성 합성 결과를 위해 유치원 공간을 시뮬레이션 하고 RFID 를 이용하여 어린이의 행동 패턴 및 위치 정보를 파악한다. 그리고 각 상황에 따라 분석된 발화문의 문장 구조와 어휘 특성을 반영하여 음성으로 합성될 문장의 문장 구조 및 어휘를 재구성하여 사용자 개별화된 음성 합성 결과를 생성한다. 이러한 결과를 통해 어린이의 행동 패턴이 발화문의 문장 구조 및 어휘에 미치는 영향에 대해서 살펴보고 재구성된 결과 발화문을 평가한다.

  • PDF

Design and Implementation of Web Analyzing System based on User Create Log (사용자 생성 로그를 이용한 웹 분석시스템 설계 및 구현)

  • Go, Young-Dae;Lee, Eun-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.264-267
    • /
    • 2007
  • 인터넷 사이트가 증가하면서 서비스 제공자는 사용자의 요구나 행동패턴을 파악하기 위하여 웹 마이닝 기법을 활용한다. 하지만 서버에 저장된 웹 로그 정보를 활용한 마이닝 기법은 전처리 과정에 많은 노력이 필요하고 사용자의 행동패턴이나 요구를 정확하게 파악하는데 한계가 있다. 이를 극복하기 위해 본 논문에서는 사용자 생성 로그정보를 이용한 방법을 제안한다. 제안 방법은 기존 서버에 저장되는 로그파일이 아닌 사용자의 행동에 의해 웹 페이지가 로딩될 때 마다 웹 마이닝에 필요한 정보를 수집하여 DB 에 저장하는 방법을 사용하였다. 이때 기존 로그파일에 로딩시간과 조회시간, 파라메타 정보를 추가하여 보다 사실적으로 사용자의 행동패턴을 파악하고자 하였다. 이렇게 생성된 로그파일을 기 등록된 메뉴정보, 쿼리정보와 조합하면 웹 마이닝에 필수적인 데이터정제, 사용자식별, 세션식별, 트랜잭션 식별등 전처리 과정의 효율성을 향상시키고 사용자의 행동패턴파악을 위한 정보 수집을 용이하게 해준다.

Behavior Pattern Analysis Algorithm Based on User Profile in Smart Home Network (스마트 홈 네트워크에서 사용자 프로파일에 기반한 행동 패턴 분석 알고리즘)

  • Kang, Won-Joon;Shin, Dong-Kyoo;Shin, Dong-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.53-54
    • /
    • 2009
  • 본 논문은 홈 네트워크 시스템에서 사용자 프로파일을 기반으로 거주자의 행동패턴을 예측하고 분석하는 BPP(Behavior Pattern Prediction) 알고리즘을 제안한다. BPP 알고리즘은 거주자가 어느 방에 자주 방문하고, 어떤 행동을 자주 반복 하는지 파악을 하여 사용자 프로파일을 구축한다. 그리고 사용자가 머물렀던 방에 대한 관심을 객관적으로 측정하기 위해 거주지 사용자의 흥미에 대해서 가중치(weight)를 부여 한다. 사용자의 프로파일로부터 얻어진 데이터에 근거를 둔 가중치가 높을수록 사용자의 행동과 방에 대한 연관성이 높다는 것을 나타낸다. BPP 알고리즘의 특징은 시간대 별로 가중치를 측정하여 사용자의 다음 행동을 예측하고, 객관적으로 사용자의 행동 패턴을 분석한다.

A Content Site Management Model by Analyzing User Behavior Patterns (사용자 행동 패턴 분석을 이용한 규칙 기반의 컨텐츠 사이트 관리 모델)

  • 김정민;김영자;옥수호;문현정;우용태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.539-541
    • /
    • 2003
  • 본 논문에서는 컨텐츠 사이트에서 디지털 컨텐츠를 보호하기 위하여 사용자 행동 패턴을 분석을 이용해 특이한 성향을 보이는 사용자를 탐지하기 위한 모델을 제시하였다. 사용자의 행동 패턴을 분석하기 위한 탐지 규칙(detection rule)으로 Syntactic Rule과 Semantic Rule을 정의하였다. 사용자 로그 분석 결과 탐지 규칙에 대한 위반 정도가 일정 범위를 벗어나는 사용자를 비정상적인 사용자로 추정하였다. 또한 제안 모델은 eCRM 시스템에서 이탈 가능성이 있는 고객 집단을 사전에 탐지하여 고객으로 유지하기 위한 promotion 전략 수립에 응용될 수 있다.

  • PDF

Efficient Mining of User Behavior Patterns by Temporal Access (시간을 고려한 모바일 사용자의 유용한 행동패턴 추출)

  • Lee, Seung-Cheol;Kim, Ung-Mo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.60-65
    • /
    • 2007
  • 유비쿼터스 컴퓨팅은 일상생활 속에 편재해 있는 PDA 또는 모바일 폰 등의 무선 단말기를 이용하여 사용자가 언제, 어디서나 유용한 서비스를 받을 수 있는 환경을 제공한다. 이는 대용량 데이터베이스에 저장된 지능형 멀티 모바일 에이전트의 통신 데이터를 분석하여 모바일 유저의 위치에 따른 요청된 유용한 서비스정보를 추출할 수 있게 되었으며, 이를 통한 효율적인 사용자 서비스는 물론 광고 등의 새로운 이익 창출로 이어져왔다. 그러나 기존 위치 정보만을 이용한 서비스정보의 추론은 단순히 통계적인 빈발 행동패턴만을 추출하여 시간에 따른 사용자의 서비스 요청에 능동적으로 대처할 수 없을 뿐만 아니라 원치 않는 서비스정보를 제공하는 문제점을 야기 시켰다. 이 논문에서는 시간을 고려한 모바일 사용자의 유용한 행동패턴 추출을 위한 효율적인 마이닝 기법인 시간대별 모바일 사용자 행동패턴 및 메모리 적재에 용이한 새로운 콤팩트한 데이터 구조를 제안한다. 이는 사용자의 동적인 움직임에 따른 실시간적 서비스를 가능하게 하며, 더 나아가 유비쿼터스 컴퓨팅 환경에서 중요한 이슈인 데이터의 메모리 적재가 용이 할 뿐만 아니라 접근속도의 향상 및 메모리 사용이 적다는 이점이 있다.

  • PDF

The behavior patterns of Cyworld's users -Focusing on Communication- (싸이월드 사용자의 행동패턴에 관한 연구 -의사소통 중심으로-)

  • Whang, Leo Sang-Min;Cho, Hee-Jin
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02b
    • /
    • pp.744-752
    • /
    • 2006
  • 사이버 공간이 현실 생활의 일부분으로 통합되어가고 사이버 공간에서의 대인간 의사소통이 보편적인 현상으로 나타남에 따라 사이버 공간에서의 의사소통과 경험 그리고 그것의 영향력에 대한 논의는 그 동안 많이 있어왔다. 그러나 기존의 연구들은 사용자의 행동 특성에 따라 사이버 공간에서의 활동과 영향력, 그리고 그 의미가 달라진다는 점을 간과하였다. 따라서 본 연구에서는 동일한 커뮤니케이션 공간인 싸이월드도 그것에 부여하는 가치와 의미는 사람마다 다르고 따라서 행동도 다를 것이라는 가정하에, 싸이월드에서 나타나는 다양한 이용행동과 활동들을 유형으로 분류하고 그 유형에 따라 싸이월드에서의 의사소통 패턴과 경험, 활동에서의 차이를 살펴보고자 했다. 사전 연구로 진행되었던 사용자 인터뷰를 통해 정리된 행동문항을 전체 설문을 통해 분석한 결과 싸이월드에서 보이는 개인의 행동적 특성을 의미하는 5 개 요인(적극성.몰입, 낯선 사람과의 연결과 정보 추구, 사생활 보호, 단순한 연락 수단, 폐쇄성)이 확인되었고, 이렇게 추출된 행동 요인을 토대로 싸이월드에서 나타나는 3 개의 행동 유형(적극적 활용형, 폐쇄적. 다이어리 추구형, 새로운 관계.정보 추구형)이 구분되었다. 행동 요인의 차이로 표현되는 3 개의 행동 유형에 따른 싸이월드에서의 의사소통 패턴과 싸이월드에서의 활동 그리고 싸이월드 경험에 대한 평가를 분석한 결과 행동 유형간에 유의미한 차이가 있는 것으로 나타났다. 본 연구는 동일한 싸이월드라는 공간이 사용자가 추구하는 가치와 목적에 따라 각기 다른 공간으로 기능하고 있음을 보여주었다는 데에 의의가 있으며, 가치의 차이로 나타나는 행동 유형에 따라 싸이월드에서 소통하는 대상과 방식이 달라지고 경험의 의미 또한 달라질 수 있음을 시사하고 있다.

  • PDF

Analysis and Summary of User's Behavior Patterns in Mobile Devices (모바일 디바이스 사용자의 행동 패턴 분석 및 요약)

  • Jung Myung-Chul;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.148-150
    • /
    • 2006
  • 최근 모바일 디바이스의 기능이 다양해지면서 현대인에게 없어서는 안 될 필수품이 되었다. 모바일 디바이스의 사용영역이 널어지면서 늘어나는 개인 정보의 활용에 대한 관심이 집중되고 있다. 본 논문에서는 모바일 디바이스에서 사용자의 행동 패턴 분석 및 요약을 위한 지능형 에이전트를 제안한다 사용자의 다양한 행동 및 상태 패턴 분석을 위해 협력적 모듈 베이지안 네트워크를 사용한다. 협력적 모들 베이지안 네트워크는 비슷한 유형의 패턴끼리 모듈로 설계해 상호 협력적으로 작동하여 사용자의 특이성을 추론한다. 사용자에 기억에 남을 만한 특이성를 선택하기 위해 Noisy-OR gate를 적응하여 계산한 특이성간의 연결 강도와 특이성의 우선순위를 바탕으로 사용자의 하루 동안의 행동을 요약하여 구성한다. 추론을 위한 프로토타입을 작성하고 시나리오를 바탕으로 제안한 방법의 유용성을 보인다.

  • PDF