• Title/Summary/Keyword: 사석마운드

Search Result 15, Processing Time 0.023 seconds

Change of Water Discharge Capability of Sluice Caisson for Tidal Power Plant According to Installation of Rubble Mound (사석마운드 설치에 따른 조력발전용 수문의 통수성능 변화)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.266-269
    • /
    • 2008
  • In this study, the results of experimental investigation on the water discharge capability of sluice caisson for tidal power plant were presented. In particular, the focus of the study was placed on the examination of change in water discharge capability of a sluice caisson according to the installation of rubble mound. For this purpose, a hydraulic experiment was carried out in an open channel flume with a great care to the measurement of discharge and water level in the flume since they greatly affects the estimation of the discharge capability of each sluice caisson. In the analysis, the experimental data of four different sluice models were used, which showed that the installation of rubble mound affects in different manner depending on each sluice caisson model. When each of the four sluice models were placed on the rubble mound respectively, the water discharge increased for one sluice caisson, whereas decreased for other three sluice caissons. Further detailed analysis is needed to quantitatively estimate the influence of installation of rubble mound on the water discharge capability of a sluice caisson.

  • PDF

Study on the design and the control of an underwater construction robot for port construction (항만공사용 수중건설로봇의 기구설계 및 제어에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.253-260
    • /
    • 2015
  • There are many efforts to mechanize the process for underwater port construction due to the severe and adverse working environment. This paper presents an underwater construction robot to level rubbles on the seabed for port construction. The robot is composed of a blade and a multi-functional arm to flatten the rubble mound with respect to the reference level at uneven terrain and to dig and dump the rubbles. This research analyzes the kinematics of the blade and the multi-functional arm including track and swing motions with respect to a world coordinate assigned to a reference depth sensor. This analysis is conducted interfacing with the position and orientation sensors installed at the robot. A hydraulic control system is developed to control a track, a blade and a multi-functional arm for rubble leveling work. The experimental results of rubble leveling work conducted by the robot are presented in land and subsea. The working speed of the robot is eight times faster than that of a human diver, and the working quality is acceptable. The robot is expected to have much higher efficiency in deep water where a human diver is unable to work.

3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션)

  • Choi, Goon-Ho;Jun, Jae-Hyoung;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-201
    • /
    • 2020
  • It has been widely known that the effect of diffracted waves at the tip of composite breakwater with finite length causes the change of standing wave height along the length of breakwater, the spatial change of wave pressure on caisson, and the occurrence of meandering damage on the different sliding distance in sequence. It is hard to deal with the spatial change of wave force on trunk of breakwater through the two-dimensional experiment and/or numerical analysis. In this study, two and three-dimensional numerical techniques with olaFlow model are used to approach the spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, it is thoroughly studied the mean wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis. In conclusion, it is confirmed that the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure checked by not two-dimensional analysis, but three-dimensional analysis through the change of wave pressure applied to the caisson along the length of breakwater.

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 2. Sliding of Caissons (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 2. 케이슨의 활동)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2006
  • This is the second of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. In this paper, Part 2, we deal with sliding of caissons. The failure modes of a vertical breakwater, which consists of a caisson mounted on a rubble mound, include the sliding and overturning of the caisson and the failure of the rubble mound or subsoil, among which most frequently occurs the sliding of the caisson. The traditional deterministic design method for sliding failure of a caisson uses the concept of a safety factor that the resistance should be greater than the load by a certain factor (e.g. 1.2). However, the safety of a structure cannot be quantitatively evaluated by the concept of a safety factor. On the other hand, the reliability design method, for which active research is being performed recently, enables one to quantitatively evaluate the safety of a structure by calculating the probability of failure of the structure. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed, i.e., Level 1, 2, and 3. In this study, we apply the reliability design methods to the sliding of the caisson of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the allowable value, indicating that the breakwater was under-designed. The probability of failure after reinforcement, however, is close to the allowable value, indicating that the breakwater is no longer in danger. On the other hand, the results of the different reliability design methods are in fairly good agreement, confirming that there is not much difference among different methods.

The Phase Difference Effects on 3-D Structure of Wave Pressure Acting on a Composite Breakwater (혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향)

  • Hur, Dong-Soo;Yeom, Gyeong-Seon;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.563-572
    • /
    • 2006
  • In designing the coastal structures, the accurate estimation of wave forces on them is very important. Recently, the empirical formulae such as Goda formula are widely used to estimate wave forces, as well as 2-D hydraulic and numerical model tests. But, sometimes, these estimation methods mentioned above seem to be unreasonable to predict 3-D structure of wave pressure on the coastal structures with 3-D plane arrangement in the real coastal area. Especially, in case of consideration of phase difference at harbor and seaward sides of the large-sized coastal structures like a composite breakwater, it is easily expected that the real wave pressures on each section of coastal structure have 3-D distribution. A new numerical model of 3-D Large Eddy Simulation, which is applicable to permeable structure, is developed to clarify the 3-D structure of wave pressures acting on coastal structure. The calculated wave forces on 3-D structure installed on the submerged breakwater show in good agreement with the measured values. In this study, the composite breakwater is adopted as a representative structure among the large-sized coastal structures and the 3-D structure of wave pressures on it is discussed in relation to the phase difference at harbor and seaward sides of it due to wave diffraction and transmitted wave through rubble mound.