• Title/Summary/Keyword: 사물 지능 통신

Search Result 331, Processing Time 0.032 seconds

Proposal of Personalized Recommendation for Korean Food and Tour Using Beacon System (비콘을 활용한 개인 맞춤형 한식과 관광지 추천 관리 시스템 제안)

  • Sung, Kihyuk;Ryu, Gihwan;Yun, Daiyeol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.267-273
    • /
    • 2020
  • Beacon is a wireless communication device that can automatically recognize the smart device in the short distance and transmit the necessary data, Beacon is a representative Internet of Things (IoT) facility in the era of the 4th Industrial Revolution, which is utilized in various fields such as short-distance information delivery, mobile location service, shopping, and marketing, and is constantly evolving. In this paper, it is based on tourist site-based recommendation information service. A system is proposed that recommends customized information according to the user's interest, preference, etc. by incorporating beacon technology. In other words, it acts as an information agent that informs tourists of desired information. In order to meet the needs of tourists, it is necessary to build an intelligent tourism recommendation system. The personalized Korean food and tourism recommendation management system using the beacon technology proposed in this paper is expected to provide high-quality services not only to foreigners visiting Korea but also to Korean tourists.

Design and Implementation of M2M-based Smart Factory Management Systems that controls with Smart Phone (스마트폰과 연동되는 M2M 기반 스마트 팩토리 관리시스템의 설계 및 구현)

  • Park, Byoung-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • The main issues of the researches are monitoring environment such as weather or temperature variation and natural accident, and sensor gateways which have mobile device, applications for mobile health care. In this paper, we propose the SFMS(Smart Factory Management System) that can effectively monitor and manage a green smart factory area based on M2M service and smart phone with android OS platform. The proposed system is performed based on the TinyOS-based IEEE 802.15.4 protocol stack. To validate system functionality, we built sensor network environments where were equipped with four application sensors such as Temp/Hum, PIR, door, and camera sensor. We also built and tested the SFMS system to provide a novel model for event detection systems with smart phone.

Development of A Machine-to-Machine (M2M)-based Public Restroom Management System (사물지능통신(M2M)을 이용한 공중화장실 관리시스템의 개발)

  • Kim, Jun Yeob;Ahn, Dae Gun;Bae, Byoung Wook;Choi, Yong Gu;Kang, Chang Soon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1473-1483
    • /
    • 2014
  • A public restroom is different from a household toilet in terms of location and a large number of sharing users. In addition, public restroom is usually messy and filthy. Recently, public toilet tends to be clearly managed than before, but it still has hygienic and clear problems. In this paper, we propose a machine-to-machine (M2M)-based public restroom management system to solve these problems, in which the system with a wireless communication device sends the status information of the toilet, such as blockage or trouble detected by a sensor, to the manager of the restroom at a remote location. In particular, we have developed a prototype management system for public restroom taking into account several system requirements, and verified the basic operations and performance of the management system. With the application of the system to public facilities, it will furnish users with more pleasant environments by restroom administrators who can respond effectively to the troubled toilet.

Application Areas for Cloud Computing Services using M2M and WoT (클라우드 컴퓨팅 서비스를 위한 M2M과 WoT 활용 방안)

  • Kim, Jangwon;Park, Dae-Ha;Baik, Doo-Kwon
    • Journal of Service Research and Studies
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 2012
  • Much technologies building cloud computing environment and supporting sevices on the cloud computing have been developing. Through the environment, accessing new services and sharing knowledge become easy. So far, they have just focused on companies which can support services and people who can use those services. In other words, the environment and models for cloud computing are the most important issue. However, the environment changes rapidly, mobile devices that are connected with each other not only will replace the computing environment based on desktop, but also can create Big data. Therefore, technologies and models are need to follow the trend including mobile based cloud computing environment. In this paper, we explain the cloud computing technologies and trend. Also we address Machine to Machine(M2M) technology and Web of things(WoT) in order to apply those into the cloud computing environment because these two concepts will enhance effectiveness and service reusability in the coming days.

  • PDF

Comparative Analysis on Smart Features of IoT Home Living Products among Korea, China and Japan (한·중·일 IoT홈 가전생활재의 지능형 기능성 비교연구)

  • Zhang, Chun Chun;Lee, Yeun Sook;Hwang, Ji Hye;Park, Jae Hyun
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.237-250
    • /
    • 2016
  • Along with rapid development, progress of the network technology and digital information technology, human are stepping into the intelligent society of internet. Thereby the quality of living environment and working environment are keep improving. Under the big background of internet era, the timeliness and convenience of smart home system has been improved greatly. While lots of smart products have gradually penetrated into people's daily life. The household appliances are among most popular ones. This paper is intended to compare smart features of household living products among most representative brands in China, Japan and South Korea. The smart features include self-learning, self-adapting, self-coordinating, self-diagnosing, self-inferring, self-organizing, and self adjusting. As result, most smart features of these products showed great similarity. While some features were dominated according to countries such as remote control feature in Korea, energy saving feature in Japan, and one button operation feature in China.

Smart Ship Container With M2M Technology (M2M 기술을 이용한 스마트 선박 컨테이너)

  • Sharma, Ronesh;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.278-287
    • /
    • 2013
  • Modern information technologies continue to provide industries with new and improved methods. With the rapid development of Machine to Machine (M2M) communication, a smart container supply chain management is formed based on high performance sensors, computer vision, Global Positioning System (GPS) satellites, and Globle System for Mobile (GSM) communication. Existing supply chain management has limitation to real time container tracking. This paper focuses on the studies and implementation of real time container chain management with the development of the container identification system and automatic alert system for interrupts and for normal periodical alerts. The concept and methods of smart container modeling are introduced together with the structure explained prior to the implementation of smart container tracking alert system. Firstly, the paper introduces the container code identification and recognition algorithm implemented in visual studio 2010 with Opencv (computer vision library) and Tesseract (OCR engine) for real time operation. Secondly it discusses the current automatic alert system provided for real time container tracking and the limitations of those systems. Finally the paper summarizes the challenges and the possibilities for the future work for real time container tracking solutions with the ubiquitous mobile and satellite network together with the high performance sensors and computer vision. All of those components combine to provide an excellent delivery of supply chain management with outstanding operation and security.

A Study on Indoor Position-Tracking System Using RSSI Characteristics of Beacon (비콘의 RSSI 특성을 이용한 실내 위치 추적 시스템에 관한 연구)

  • Kim, Ji-seong;Kim, Yong-kab;Hoang, Geun-chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Indoor location-based services have been developed based on the Internet of Things technologies which measure and analyze users who are moving in their daily lives. These various indoor positioning technologies require separate hardware and have several disadvantages, such as a communication protocol which becomes complicated. Based on the fact that a reduction in signal strength occurs according to the distance due to the physical characteristics of the transmitted signal, RSSI technology that uses the received signal strength of the wireless signal used in this paper measures the strength of the transmitted signal and the intensity of the attenuated received signal and then calculates the distance between a transmitter and a receiver, which requires no separate costs and makes to implement simple measurements. It was applied calculating the value for the average RSSI and the RSSI filtering feedback. Filtering is used to reduce the error of the RSSI values that are measured at long distance.It was confirmed that the RSSI values through the average filtering and the RSSI values measured by setting the coefficient value of the feedback filtering to 0.5 were ranged from -61 dBm to - 52.5 dBm, which shows irregular and high values decrease slightly as much as about -2 dBm to -6 dBm as compared to general measurements.

Design and Performance Evaluation of Digital Twin Prototype Based on Biomass Plant (바이오매스 플랜트기반 디지털트윈 프로토타입 설계 및 성능 평가)

  • Chae-Young Lim;Chae-Eun Yeo;Seong-Yool Ahn;Myung-Ok Lee;Ho-Jin Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.935-940
    • /
    • 2023
  • Digital-twin technology is emerging as an innovative solution for all industries, including manufacturing and production lines. Therefore, this paper optimizes all the energy used in a biomass plant based on unused resources. We will then implement a digital-twin prototype for biomass plants and evaluate its performance in order to improve the efficiency of plant operations. The proposed digital-twin prototype applies a standard communication platform between the framework and the gateway and is implemented to enable real-time collaboration. and, define the message sequence between the client server and the gateway. Therefore, an interface is implemented to enable communication with the host server. In order to verify the performance of the proposed prototype, we set up a virtual environment to collect data from the server and perform a data collection evaluation. As a result, it was confirmed that the proposed framework can contribute to energy optimization and improvement of operational efficiency when applied to biomass plants.

A Design of Authentication Mechanism for Secure Communication in Smart Factory Environments (스마트 팩토리 환경에서 안전한 통신을 위한 인증 메커니즘 설계)

  • Joong-oh Park
    • Journal of Industrial Convergence
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • Smart factories represent production facilities where cutting-edge information and communication technologies are fused with manufacturing processes, reflecting rapid advancements and changes in the global manufacturing sector. They capitalize on the integration of robotics and automation, the Internet of Things (IoT), and the convergence of artificial intelligence technologies to maximize production efficiency in various manufacturing environments. However, the smart factory environment is prone to security threats and vulnerabilities due to various attack techniques. When security threats occur in smart factories, they can lead to financial losses, damage to corporate reputation, and even human casualties, necessitating an appropriate security response. Therefore, this paper proposes a security authentication mechanism for safe communication in the smart factory environment. The components of the proposed authentication mechanism include smart devices, an internal operation management system, an authentication system, and a cloud storage server. The smart device registration process, authentication procedure, and the detailed design of anomaly detection and update procedures were meticulously developed. And the safety of the proposed authentication mechanism was analyzed, and through performance analysis with existing authentication mechanisms, we confirmed an efficiency improvement of approximately 8%. Additionally, this paper presents directions for future research on lightweight protocols and security strategies for the application of the proposed technology, aiming to enhance security.

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.