• Title/Summary/Keyword: 사면정보시스템

Search Result 88, Processing Time 0.032 seconds

Development of the Guiding System for the Counter-Construction Method Stabilizing Slopes (사면안정 대책공법 안내시스템 개발)

  • Ji, Young-Hwan;Hur, Tae-Sung;Hwang, Yeong-Cheol;Tscha, Yeong-Hwan;Lee, Seung-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.159-162
    • /
    • 2007
  • 상지대학교 #낙석 및 산사태 방재연구단#에서는 #건설교통부 지역기술혁신사업#의 일환으로 사계절 낙석과 산사태 위험에 노출되어 있는 강원지역의 주요 도로 사면에 대한 재해를 저감하기 위하여 통합 사면관리기술, 광역산사태 저감기술 및 사면 안정성중대기술을 개발하고 있다. 본 논문은 강원지역의 최근 5년간 시공된 주요 사면별 178종의 애트리뷰트들의 정보를 Database화하고 이를 활용하여 시공 예정인 특정 사면과 환경조건이 유사한 사면에 적용하였던 공법들과 이에 따른 유지보수 내역과 안정성 등의 정보를 제공하는 사면정보 검색시스템의 설계와 구현에 관한 것이다. 검색의 효율성을 위해 18종의 중요 애트리뷰트들을 선정하고, 이들을 선택형과 기재형으로 분류한 후, 공법들간의 유사도(일치도)를 측정하는 방안을 도입하였다.

  • PDF

Slope Navigation based on the Cut Slope Data Management System (내비게이션 기반 절토사면 데이터 관리시스템)

  • Bae, Sang-Woo;Kim, Seung-Hyun;Lee, Jong-Hyun;Koo, Ho-Bon;Lee, Yun-Rae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2010
  • Cut Slope Management System(CSMS) is a systematic maintenance and management system designed to prevent the collapse of cut slopes located along national roads. In order to implement safe road operation system, KICT has started the inventory of cut slopes and developed a cut slope database since 2006. Cut slope database management system using GIS technology and navigation system was developed as a Information Technology application. Through the Cut Slope Navigation System(SLOPE-Navi.), the previously developed database was checked and verified. The converted cut slope inventory data and field investigation data of 28,707 cut slopes were loaded on the navigation map. We consider that the Cut Slope Navigation Management System can be useful as in-situ system, which can be systematic and effective DB management and operation to prevent cut slope collapses and establish a remedial countermeasure as mitigation concerning disasters.

Development of Slope Information Retrieval and Real-time Warnings System for a Landslide Disaster Reduction from Mobile Environments (모바일 환경에서의 산사태 재해 저감을 위한 사면 정보 검색 및 실시간 경고 시스템 개발)

  • Kim, Sung-Ho;Ji, Young-Hwan;Lee, Seung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • This paper describes a development of next generation information remote retrieval and warning system that enables the user to make slope information retrieval remotely for a rockfall and landslide disaster reduction from mobile environments. And this system will be able to warn with a real-time stability condition about the slope which circumference are contiguous in standard user location. Slope information which provides to the user, become the service which upgrades from depth deep information directness will be able to confirm in order from field with applies multimedia style information which is various. In order to retrieve slope information with the wire and wireless internet from the remote place, we used mobile PC carrying is simple. Also this system attached GPS receiver to mobile PC in order to confirm user location as a real-time from the electronic map from field. Specially this system user location divide the safety of the slope which within the area where are fixed in the center are representative with 'safe area', 'collapse area' and 'collapse forecast area' etc. And to indicate with the icon of each other different color simultaneously in the electronic map. With like that reason, this system which sees the user even while moving safety condition about circumferential slope from the electronic map is having the strong point will be able to grasp with a real-time in one eye. Also warning message leads at the case real-time when the collapse will occur in specific slope, to inform to the user. Therefore this system which sees will be able to reduce the disaster which is caused by in landslide a very big strong point and has.

Soil Volume Computation Technique at Slope Failure Using Photogrammetric Information (영상정보를 활용한 사면 붕괴 토사량 산정 기법)

  • Bibek, Tamang;Lim, Hyuntaek;Jin, Jihuan;Jang, Sukhyun;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The uses of unmanned aerial vehicles (UAV) have been expanding in agriculture surveys, obtaining real time updates of dangerous facilities where human access is difficult, disaster monitoring, and 3D modeling. In reality, there is an upsurge in the application of UAVs in fields like, construction, infrastructure, imaging, surveying, surveillance and transportation. Especially, when the slope failure such as landslide occurs, the uses of UAVs are increasing. Since, the UAVs can fly in three dimensions, they are able to obtain spatial data in places where human access is nearly impossible. Despite of these advantages, however, the uses of UAVs are still limited during slope failure. In order to overcome these limitations, this study computes the soil volume change during slope failure through the computation technique using photogrammetric information obtained from UAV system. Through this study, it was found that photogrammetric information from UAV can be used to acquire information on amount of earthworks required for repair works when slope collapse occurs in mountainous areas, where human access in difficult.

Analysis of Slope Fracturing using a Terrestrial LiDAR (지상라이다를 이용한 사면파괴 거동분석)

  • Yoo, Chang-Ho;Choi, Yun-Soo;Kim, Jae-Myeong
    • Spatial Information Research
    • /
    • v.16 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • Landslide, one of the serious natural disasters, has Incurred a large loss of human and material resources. Recently, many forecasting or alarm systems based on various kinds of measuring equipment have been developed to reduce the damage of landslide. However, only a few of these equipments are guaranteed to evaluate the safety of whole side of land slope with their accessibility to the slope. In this study, we performed some experiments to evaluate the applicability of a terrestrial LiDAR as a surveying tool to measure the displacement of a land slope surface far a slope collapsing protection system. In the experiments, we had applied a slope stability method to a land slope and then forced to this slope with a load increasing step by step. In each step, we measured the slope surface with both a total station and a terrestrial LiDAR simultaneously. As the result of Slope Fracturing analysis using all targets, the LiDAR system showed that three was 1cm RMSE on X-axis, irregularity errors on Y-axis and few errors on Z-axis compare with Total Station. As the result of Slope Fracturing analysis using continuous targets, the pattern of Slope Fracturing was different according to the location of continuous targets and we could detect a continuous change which couldn't be found using Total station. The accuracy of the LiDAR data was evaluated to be comparable to that of the total station data. We found that a LiDAR system was appropriate to measuring the behaviour of land slope. The LiDAR data can cover the whole surface of the land slope, whereas the total station data are available on a small number of targets. Moreover, we extracted more detail information about the behavior of land slope such as the volume and profile changes using the LiDAR data.

  • PDF

Comparison of Methods in the Identification of Land Slide Prone Areas using GIS (지리정보시스템(GIS)을 이용한 사면붕괴지역 예측방법 연구 및 비교)

  • 장훈;윤완석;신동준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.99-105
    • /
    • 2004
  • 지리정보시스템을 이용한 사면붕괴 연구는 국내외 많은 연구논문과 보고서를 통하여 보고되어 왔다. 반면, 지리정보시스템을 이용한 연구는 현재 다수의 학자들에 의하여 발표되고 있으나, 그 결과에 대한 비교와 국내 실효성에 대하여 언급한 논문은 다소 미흡하다. 본 논문에서는 국내 자료의 실용가능성을 감안하여 사면붕괴지역 가능성예측 산정 모델 중 두 가지 방법, 이변량 통계분석과 결정론적 분석을 통하여 동일지역에 적용하여 그 결과를 비교하였다. 선정된 대상지역은 2002년 태풍 '루사'로 인하여 피해가 규모가 큰 강원도 강릉시이고, 두 모델을 이 지역에 적용하였다. 결과 비교는 동일지역에 동일 자료를 사용하더라도 모델에 따라 발생가능성이 높은 지역이 다소 차이를 보였으며, 모델 또한 자료의 질적, 양적인 성질에 따라 크게 영향을 받는 것이 밝혀졌다.는 것이 밝혀졌다.

  • PDF

Development of a Prototype System for Slope Failure Monitoring Based on USN Technology (USN 기술을 이용한 사면붕괴모니터링 시범시스템 개발)

  • Han, Jae-Goo;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.316-321
    • /
    • 2007
  • The casualties due to slope failures such as landslide, rock fall, debris flow etc. are about 24% in total casualties caused by natural disasters for the last 10 years. And these slope failures are focused in the season in which typhoon and torrential rain take place. Not much attention, however, have been put into landslide mitigation research. Meanwhile, USN(Ubiquitous Sensor Network) forms the self-organization network, and transfers the information among sensor nodes that have computing technology ability. Accordingly, USN is embossed a social point technology. The objective of this paper is to develop a prototype system for slope failure monitoring using USN technology. For this we develop module that collects and change slope movement data measured by two tiltermeter and a tension wire, store transferred data in database. Also we develop application program that can easily analyze the data. We apply the prototype system to a test site at KICT for testing and analyzing the system's performance.

  • PDF

Modeling of Petri-Net for an Simulation of Cut Slope Test on GIS (GIS 기반 절토 사면 시뮬레이션을 위한 Petri-Net 모델링)

  • Lee, Hong-Ro;Lee, Jae-Bong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • Due to a heavy rain resulted from the global environmental change, collapse accidents happen annually and it is a tendency to increase the loss of life and economy. Thus, measures for the collapse of slope are required. If the slope can be simulated before cutting, the collapse can be predicted, and also the accident of the collapse can be minimized at the cost of recovery. This paper presents a simulation method of a slope which is important in cutting. The method is modeling and designing using Petri-Net and is implemented in the Windows XP using Arc GIS. Therefore, by means of cutting and reclamation based on GIS, this paper can contribute to saving a lot of time and money.

Development and Application of the Slope Management Program in Urban Area (대도시 사면관리프로그램 개발 및 적용)

  • Kim, Kyeong-Su;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.15-25
    • /
    • 2007
  • In general, the life and asset casualties that occur due to landslide or slope failure in urban areas are larger than that in rural areas. In order to reduce the casualties, a slope management program is necessary to categorize slopes based on properties and to manage them systematically. The slope management system is the establishment of the data base for the geological and geotechnical factor according to slope stability, and the utilization of the data base to manage slopes. The suitable system must develop to slopes in urban area through the survey, analysis and evaluation process. Based on the above necessity, the slope management program which is applicable to slope management in an urban area has been developed at Hwangryung Mt. in Busan as a target area. The developed slope management program has various functions such as slope ID number of each slope or sub-region of a mountain, making a slope data sheet, analysis and grouping of slope stability, and establishment of a data base. The slope management program is constructed by use of GIS, and the survey, test and analysis data according to all slopes can be input and edited into the program. The program can also be utilized practically by end users due to the convenient input, edition printing, management and operation of slope data. Therefore, the slope management system has been established on the application of the developed program in Busan which is located in slope area. As the system is widely applied to other cities, the slope in urban area can be managed systematically and the slope hazards can be minimized.