• Title/Summary/Keyword: 사면보강공법

Search Result 124, Processing Time 0.03 seconds

Evaluation of Slope Stability and Deterioration Degree for Bangudae Petroglyphs in Ulsan, Korea (울산 반구대암각화의 손상도 및 사면안정성 평가)

  • Lee, Chan-Hee;Chun, Yu-Gun;Jo, Young-Hoon;Suh, Man-Cheol
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2012
  • The major petroglyphs of Bangudae site were composed mainly of hornfelsed shale. Surface of the rock was formed weathering layer (average porosity 25%) that discriminated mineral and chemical composition against fresh rock (average porosity 0.4%). The lost area of major petroglyphs in the past up images carved to the present was calculated about 23.8%. And occurrence area of exfoliation indicated 1.2% of the whole petroglyphs. As a result of the chromaticity analysis, color of the major petroglyphs was changed brighter and yellower than fresh rock by chemical and biological weathering factors. Average ultrasonic velocity of petroglyphs was measured 2,865m/s. This result indicated that ultrasonic velocity decreased especially bottom of petroglyphs than measured result in 2003 year. The results of the evaluation for slope stability, it identified the possibility of toppling, planar and wedge failure in host rock. The 3D image analysis and modeling data of the cavern obtained for structural reinforcement.

Precisely Nondestructive Diagnosis and Slope Stability of the Bonghwa Bukjiri Maaeyeoraejwasang (Rock-Carved Seated Buddha Statue), Korea (봉화 북지리마애여래좌상의 비파괴 정밀진단과 사면안정성 분석)

  • Cho, Ji-Hyun;Jo, Young-Hoon;Chun, Yu-Gun;Choi, Joon-Hyun;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.121-132
    • /
    • 2010
  • The Bukjiri Maaeyeoraejwasang (National Treasure No. 201) consists of two-mica granite in medium size, which was the simbol of power in the region of the Silla period. Magnetic susceptibility of the host rock was measured as 0.41(${\times}10^{-3}$ SI unit), which has the similar range with surrounding outcrop. The Buddha developed parallel discontinuous plane of NE to SW strike and damaged seriously by exfoliation, granular disintegration and brown discoloration as 41.5%, 16.7% and 40.0%, respectively. As a result of the ultrasonic velocity, which was relatively weak values as 1,629m/s (Buddha area) and 1,549m/s (surrounding outcrop), improved about 900m/s compared to last treatment. From the results of the evaluation for slope stability, identified the possibility of toppling failure in the Buddha, and planar and wedge failure in host rock. Therefore, we suggest for the safely conservation of the Buddha, continuance monitoring for understand behavior of discontinuity system of the surface, and necessitate foundation reinforcement method for the rock which has the danger of collapse.

Stability Analysis and Reliability Evaluation of the Pretensioned Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 신뢰도 분석)

  • 김홍택;강인규;박사원;고용일;권영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.105-127
    • /
    • 1999
  • Application of the soil nailing method is continuously extended in maintaining stable excavations and slopes. Occasionally, however, ground anchor support system may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then, could play important roles in reducing deformations mainly in an upper part of the nailed-soil excavation system as well as improving local stability. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the pretensioned soil nailing system. Also proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. The predicted results are compared with the limited measurements obtained from the excavation site constructed by using the pretensioned soil nails. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and FLAC$^{2D}$ program analysis.s.

  • PDF

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

Evaluation of Field Application of Precast Concrete-panel Retaining Wall attached to In-Situ Ground Using Field Test and Numerical Analysis (현장시험 및 수치해석 분석을 통한 원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Kwon, Yong Kyu;Min, Kyoung-nam;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.99-106
    • /
    • 2020
  • Man-made slope is inevitable to make a new road, which may result in environmental problems as well as collapse of slope. To prevent these problems, various methods such as geogrid reinforced retaining wall, precast concrete-panel retaining wall, and so on, have been introduced and developed. Among these methods, this paper presents the evaluation of field application of precast concrete-panel retaining wall attached to in-situ ground (so called top-down) compared to the conventional construction method of precast concrete-panel retaining wall (so called bottom-up) through the field test and numerical analysis. As a result, the safety factor of both methods in final stage is similar, however, top-down method guarantees the slope stability during the construction compared to bottom-up method.

Assessment and Damage Reduction Strategy of Acid Rock Drainage in Highway Construction Site: ○○ Highway Construction Site (고속도로 건설현장의 산성배수 발생개연성평가 및 피해저감대책: ○○고속도로건설현장)

  • Lee, Jin-Soo;Kim, Jae Gon;Park, Jeong-Sik;Chon, Chul-Min;Nam, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.411-424
    • /
    • 2013
  • Assessment and damage reduction strategy of acidic rock drainage were conducted in a section of ${\bigcirc}{\bigcirc}$ highway construction site. The geology of the studied section consists of Icheonri sandstone and intermediate to acidic volcanic rocks. Sulfides occur as a disseminated type in sandstone and volcanics which were altered by the hydrothermal solution of granite intrusion. Volcanics and sandstone with a high content of sulfide were classified as a potentially acid rock drainage(ARD) forming rock. The drainage originated from those rocks may acidify and contaminate the surrounding area during the highway construction. Therefore, the drainage should be treated before it is discharged. A slope landslide hazard due to the ARD was also expected and the coating technology was recommended for the reduction of ARD generation as a preemptive measure before reinforcement work for enhancing slope stability such as shotcrete and anchor. According to the ARD risk analysis, those rocks should not be used as cement aggregate, but only to be used as a bank fill material of a filling-up system that allows minimal contact with rainfall and groundwater.

Assessment of Acid Rock Drainage Production Potential and Damage Reduction Strategy: A Case Study of Tunnel Construction Area (암석의 산성배수 발생개연성 평가 및 피해저감대책: 터널건설예정구간 사례)

  • Kim, Jae-Gon;Lee, Jin-Soo;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.335-344
    • /
    • 2008
  • The acid rock drainage (ARD) production potential of rock was assessed for a tunnel construction area, Kimhae and the damage reduction strategy was discussed based on the ARD risk evaluation. The geology of the studied area consisted of Mesozoic quartz porphyry, sandstone, tuff and granite. Sulfides occurred as a disseminated type in quartz porphyry and granite, and a vein type in sandstone. Quartz porphyry and sandstone with a high content of sulfide were classified as a potentially ARD forming rock. The drainage originated from those rocks may acidify and contaminate the surrounding area during the tunnel construction. Therefore, the drainage should be treated before it is discharged. A slope stability problem due to the ARD was also expected and the coating technology was recommended for the reduction of ARD generation before the application of supplementary work for enhancing slope stability such as shotcrete and anchor. From the ARD risk analysis, those rocks should not be used as aggregate and be used as bank fill material with the system for the minimum contact with rain water and ground-water.

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF