• 제목/요약/키워드: 사람 수 추정

검색결과 372건 처리시간 0.03초

모델 기반의 시선 방향 추정을 이용한 사람 행동 인식 (Human Activity Recognition using Model-based Gaze Direction Estimation)

  • 정도준;윤정오
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.9-18
    • /
    • 2011
  • 본 논문에서는 모델 기반으로 추정한 사람의 시선 방향을 이용하여 실내 환경에서 발생 할 수 있는 사람의 행동을 인식하는 방법을 제안한다. 제안하는 방법은 크게 두 단계로 구성된다. 첫째, 행동 인식을 위한 사전 정보를 얻는 단계로 사람의 머리 영역을 검출하고 시선 방향을 추정한다. 사람의 머리 영역은 색상 정보와 모양 정보를 이용하여 검출하고, 시선 방향은 머리와 얼굴의 관계를 표현한 베이지안 네트워크 모델을 이용하여 추정한다. 둘째, 이벤트와 사람의 행동을 나타내는 시나리오를 인식하는 단계이다. 이벤트는 사람의 상태 변화로 인식하고, 시나리오는 이벤트들의 조합과 제약 사항을 이용하여 규칙 기반으로 인식한다. 본 논문에서는 시선방향과 연관이 있는 4 가지의 시나리오를 정의하여 실험 한다. 실험을 통해 시선 방향 추정의 성능과 시선 방향이 고려된 상황에서의 행동 인식 성능을 보인다.

FMCW 레이더 및 CNN을 이용한 다양한 각도로 누운 자세 추정 연구 (A Study on Estimation of Lying Posture at Multiple Angles Using Single Frequency Modulated Continuous Wave (FMCW) Radar-Based CNNs)

  • 장경석;주준호;김영억
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2023년 정기학술대회 논문집
    • /
    • pp.349-350
    • /
    • 2023
  • 본 논문에서는 FMCW(Frequency Modulated Continuous Wave) 레이더를 사용하여 재난 상황에서 누워 있는 사람의 다양한 각도의 자세를 통해 사람의 상태를 파악하거나 위치를 추정하고자하였다. 사람의 세 가지 누운 자세 데이터를 전처리하고 이미지로 변환한 데이터를 CNN(Convolutional Neural Network) 1D 모델로 학습시켜 누운 자세를 다양한 각도에서 구별할 수 있는지 분석하여 확인하고자하였으며, 분석 결과 CNN 1D 모델은 99.27%의 정확도를 보였다.

  • PDF

3축 가속도 데이터를 이용한 일상 생활용 활동 에너지 소비량 추정을 위한 알고리즘 개발 연구

  • 장용원;송윤선;김승환
    • 정보와 통신
    • /
    • 제31권12호
    • /
    • pp.38-43
    • /
    • 2014
  • 효과적인 칼로리 소비는 칼로리 균형의 측면에서 매우 중요하다. 활동으로 인해 소비되는 열량은 사람의 일일 총 소비 열량 중 15~30%를 차지하며 사람들은 오직 이 부분만을 조절할 수 있다. 트레드밀 위에서의 활동 강도가 증가 할수록 소비되는 칼로리의 증가 경향은 $y=27.33e^{0.21x}$의 지수함수 형태의 곡선에 피팅됨을 확인할 수 있었다. 또한 인공신경망을 활용한 소모 열량 추정 알고리즘은 전체적 상관관계가 R=0.94로 좋은 결과를 보여주었다.

기하학적 정보를 이용한 영상 시퀀스에서 높이 추정에 관한 연구 (Height Measurement using Geometric informations from image sequences)

  • 김상훈;김종수;윤용인;최종수;김진태
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.529-532
    • /
    • 2001
  • 본 논문에서는 보안 시스템에서 사람 인식을 위한 중요한 단서 중의 하나인 사람의 키를 측정하는 알고리즘으로, 이미지 시퀀스에서 사람의 영역을 추출하고 기하학적 정보를 이용해 추출된 사람의 키를 측정하고자 한다. 이를 위해 단일 이동 물체 사람을 대상으로 하여 시퀀스 이미지에서 사람의 움직임 정보를 추출하고, 추출된 영역에서 수직 히스토그램 투영을 하여 사람의 중심선을 찾아 머리와 발의 좌표점을 추출한다. 추출된 좌표점들은 소실점과 소실선의 기하학적 해석과 미리 입력한 다른 물체의 기준높이를 가지고 실세계에서의 사람의 키를 측정하게 된다.

  • PDF

음원 위치 추정 시스템의 정확도 향상 방법 (The Method of Elevation Accuracy In Sound Source Localization System)

  • 김용은;정진균
    • 대한전자공학회논문지SP
    • /
    • 제46권2호
    • /
    • pp.24-29
    • /
    • 2009
  • 음원 추정 시스템은 로봇, 화상회의, CCTV(Closed-circuit television) 시스템에 쓰인다. 이러한 음원 추정 시스템은 사람을 대상으로 하며 사람이 말하는 동안 여러 개의 음성 데이터 프레임을 입력받을 수 있다. 본 논문에서는 입력된 음성 데이터 프레임으로부터 정확한 각도를 계산 할 수 있는 음성 데이터 프레임을 선별하여 각도 추정 오차를 줄이는 방법에 대해서 제안한다. 또한 선별된 데이터를 각도로 변환한 후 메디언 필터를 적용하여 음원 추정 시스템의 오차를 줄일 수 있다. 제안된 시스템을 이용하여 실험한 후 각도 추정 오차 평균이 31%감소함을 보인다.

초분광 영상을 활용한 최대추정가능수심 산정 기법 개발 (Estimation of maximum measurable depth using hyperspectral image)

  • 서영철;김동수;유호준;권영화
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.444-444
    • /
    • 2022
  • 하천 수심 계측은 수심을 사람이 직접 계측하거나 초음파 기반 유속계 (ADCP) 등 최신 계측기기를 이용하여 간접적으로 계측을 실시하고 있다. 하지만 사람이 직접 하천에서 수심을 측정하는 것은 위험이 동반되고, 수심자료의 측정오차가 크게 발생한다. 따라서 수심측정에서 직접 측정 방식의 한계를 극복하기 위해, 초분광 영상의 반사도와 수심이 높은 상관관계를 보이는 것을 활용하여, 초분광 영상 기반 수심 산정 기법을 개발하였다. 초분광 영상 기반 수심 산정 기법은 복수의 파장이 존재하는 초분광영상으로부터 두 개의 파장대의 밴드를 추출하여 모든 경우의 수에 대해 밴드비를 산정한 후, 실측수심과 밴드비 간의 회귀분석을 실시하여 상관계수가 가장 높은 회귀식을 찾아내는 방식이 최적 밴드비 분석법에 기반한다. 최적 밴드비 분석법을 통해 획득된 높은 상관성의 밴드비-수심 관계식을 이용하여 수심을 추정할 수 있다. 이러한 방법은 직접 수심 측정 방식에 비해, 높은 해상도와 밀도, 양질의 데이터를 수집할 수 있는 장점이 있다. 과거 연구에 따르면 저수심부에서의 높은 정확도의 수심추정 결과를 보였지만, 고수심부에서는 실측수심과의 오차도 높아지는 등 정확성이 떨어지는 경향을 보인다. 따라서 본 연구에서는 보다 효율적인 수심계측을 할 수 있도록 최적 밴드비 분석법을 활용한 수심추정에서 신뢰성 있는 수심의 범위를 파악할 수 있는 방법을 제시하고자 한다. 본 연구에서는 대상지역으로 낙동강 본류와 황강 지류 합류부로 선정하였고, 초음파 기반 유속계(ADCP)와 드론을 활용하여 실측수심과 초분광 영상을 취득하였다. 민감도 분석을 위한 수심자료를 0.5m 단위로 분할하였으며, 구간별로 최적 밴드비 분석을 실시하였다. 그 결과, 구간별로 산정된 상관계수와 평균제곱근오차 (RMSE)를 통해 정확도가 높은 구간을 구별할 수 있었다. 또한 해당 구간을 초과하는 수심은 초분광 영상을 통해 추정이 어려운 것으로 판단되며, 분석한 구간까지를 최대 추정 가능 수심으로 정의하였다. 마지막으로 검증을 위해 최대추정가능수심으로 판단된 구간까지의 데이터만 활용하여 최적 밴드비 분석법을 적용하여 상관계수나 평균제곱근오차 결과의 개선여부 확인을 통해, 본 연구에서 제시한 방법이 정확한 최대추정가능수심 구간을 산정할 수 있는지 확인하였다.

  • PDF

모델 기반의 보행자 신체 추적 기법 (Model-based Body Motion Tracking of a Walking Human)

  • 이우람;고한석
    • 대한전자공학회논문지SP
    • /
    • 제44권6호
    • /
    • pp.75-83
    • /
    • 2007
  • 본 논문은 영상 기반의 사람의 자세 추정에 대하여 다룬다. 특히 사람이 걷는 동안 카메라는 사람의 측면을 관찰하고 있다고 가정한다. 사람의 자세 추정의 문제는 인간-컴퓨터 상호 작용이나 지능형 감시 시스템을 위해 연구가 되는 분야이며, 본 논문에서는 일반적인 보행 상황에서 감시 시스템 또는 위치 추적, 자세 인식에 응용할 수 있는 알고리즘을 제시한다. 이 분야의 최근의 연구동향은 마코프 네트워크를 이용하여 신체 부분들의 위치나 움직임의 관계를 조건부 독립으로 가정하여 다루고 있다. 이러한 방법들의 경우 신체를 십여 개의 부분들로 모델링하고, 연결된 신체들의 관계를 고려하여 자세를 추정한다. 본 논문에서는 이러한 방법을 응용하여 모델을 단순화하고, 더 나아가 손쉽게 사람의 자세를 파악할 수 있는 방법을 제시한다. 이를 위해 신체 부분들이 독립적임을 가정하여 그 위치를 찾은 후에, 모션 캡쳐 데이터로부터 얻은 신체 부분들의 움직임 간의 관계를 고려하여 자세를 수정하여 주었다. 사람의 신체를 찾기 위해 edge matching을 이용하였으며, 그 과정에서 신체 부분의 edge 성분의 방향성을 강조하기 위해 Anisotropic Gaussian Filter를 사용하였다. 신체의 부분이 가려지는 경우, 모델의 silhouette을 이용하여 가려지는 부분에 대해 추가의 matching cost를 부여함으로써 occlusion 시에도 신체의 부분을 찾을 수 있도록 하였다.

키넥트를 이용한 실내에서의 키 추정 방법 (Height Estimation using Kinect in the Indoor)

  • 김성민;송종관;윤병우;박장식
    • 한국전자통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.343-350
    • /
    • 2014
  • 객체 인식은 지능적이고 다양화된 범죄 예방을 위해 감시 시스템에서 중요한 기술이다. 사람의 신체 정보인 키는 대상이 가지고 있는 신체적인 특징으로 신원을 확인하는데 중요한 정보가 될 수 있다. 본 논문에서는 RGB-Depth 카메라, 키넥트를 활용한 새로운 키 추정 방법을 제안한다. 사람의 키를 측정하기 위해 키넥트의 높이를 알고 있는 것으로 가정하고, 키넥트에서 머리와 발까지의 거리를 키넥트의 깊이 정보를 이용하여 사람의 키를 추정한다. 실험을 통하여 제안하는 방법이 실내에서 사람의 키를 추정하는데 효과적임을 확인한다.

모션 기반의 검색을 사용한 동적인 사람 자세 추적 (Dynamic Human Pose Tracking using Motion-based Search)

  • 정도준;윤정오
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2579-2585
    • /
    • 2010
  • 본 논문은 단안 카메라로부터 입력된 영상에서 모션 기반의 검색을 사용한 동적인 사람 자세 추적 방법을 제안한다. 제안된 방법은 3차원 공간에서 하나의 사람 자세 후보를 생성하고, 생성된 자세 후보를 2차원 이미지 공간으로 투영하여, 투영된 사람 자세 후보와 입력 이미지와의 특징 값 유사성을 비교한다. 이 과정을 정해진 조건을 만족 할 때까지 반복하여 이미지와의 유사성과, 신체 부분간 연결성이 가장 좋은 3차원 자세를 추정한다. 제안된 방법에서는 입력 이미지에 적합한 3차원 자세를 검색할 때, 2차원 영상에서 추정된 신체 각 부분들의 모션 정보를 사용해 검색 공간을 정하고 정해진 검색 공간에서 탐색하여 사람의 자세를 추정한다. 2차원 이미지 모션은 비교적 높은 제약이 있어서 검색 공간을 의미있게 줄일 수 있다. 이 방법은 모션 추정이 검색 공간을 효율적으로 할당 해주고, 자세 추적이 여러 가지 다양한 모션에 적응할 수 있다는 장점을 가진다

딥러닝 기반 시각-관성을 활용한 드론 주행기록 추정 (Deep Learning based Visual-Inertial Drone Odomtery Estimation)

  • 송승연;박상원;김한결;최수한
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.842-845
    • /
    • 2020
  • 본 연구는 시각-관성 기반의 딥러닝 학습으로 자유분방하게 움직이는 드론의 주행기록을 정확하게 추정하는 것을 목표로 한다. 드론의 비행주행은 드론의 온보드 센서와 조정값을 이용하는 것이 일반적이다. 본 연구에서는 이 온보드 센서 데이터를 학습에 사용하여 비행주행의 위치추정을 실험하였다. 선행연구로써 DeepVO[1]룰 구현하여 KITTI[3] 데이터와 Midair[4] 데이터를 비교, 분석하였다. 3D 좌표면에서의 위치 추정에 선행연구 모델의 한계가 있음을 확인하고 IMU를 Feature로써 사용하였다. 본 모델은 FlowNet[2]을 모방한 CNN 네트워크로부터 Optical Flow Feature에 IMU 데이터를 더해 RNN으로 학습을 진행하였다. 본 연구를 통해 주행기록 예측을 다소 정확히 했다고 할 수 없지만, IMU Feature를 통해 주행기록의 예측이 가능함을 볼 수 있었다. 본 연구를 통해 시각-관성 분야에서 사람의 지식이나 조정이 들어가는 센서를 융합하는 기존의 방식에서 사람의 제어가 들어가지 않는 End-to-End 방식으로 인공지능을 학습했다. 또한, 시각과 관성 데이터를 통해 주행기록을 추정할 수 있었고 시각적으로 그래프를 그려 정답과 얼마나 차이 있는지 확인해보았다.