• Title/Summary/Keyword: 사람혀편평세포암종세포

Search Result 4, Processing Time 0.017 seconds

Mechanism Underlying a Proteasome Inhibitor, Lactacystin-Induced Apoptosis on SCC25 Human Tongue Squamous Cell Carcinoma Cells (사람혀편평상피세포암종세포에서 proteasome 억제제인 lactacystin에 의해 유도된 세포자멸사의 기전에 대한 연구)

  • Baek, Chul-Jung;Kim, Gyoo-Cheon;Kim, In-Ryoung;Lee, Seung-Eun;Kwak, Hyun-Ho;Park, Bong-Soo;Tae, Il-Ho;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.261-276
    • /
    • 2009
  • Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, $p21^{WAF1/CIP1}$ and $p27^{KIP1}$. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.

Apoptotic Effect of Co-Treatment with Chios Gum Mastic and Eugenol on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line (사람혀편평세포암종세포에서 Chios gum mastic과 eugenol의 병용처리가 미치는 세포자멸사 효과에 관한 연구)

  • Sohn, Hyeon-Jin;Yea, Byeong-Ho;Kim, In-Ryoung;Park, Bong-Soo;Jeong, Sung-Hee;Ahn, Yong-Woo;Ko, Myung-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.3
    • /
    • pp.147-160
    • /
    • 2011
  • Eugenol (4-allyl-2-methoxyphenol) is a natural phenolic constituent extensively used in dentistry as a component of zinc oxide eugenol cement and is applied to the mouth environment. Chios gum mastic (CGM) is a resinous exudate obtained from the stem and the main leaves of Pistacia lenticulus tree native to Mediterranean areas. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with a natural product, CGM and natural phenolic compound, eugenol on SCC25 human tongue squamous cell carcinoma cell line. To investigate whether the co-treatment with eugenol and CGM compared to each single treatment efficiently reduces the viability of SCC25 cells, MTT assay was conducted. Induction and augmentation of apoptosis were confirmed by Hoechst staining, TUNEL staining and DNA hypoploidy. Westen blot analysis and immunofluorescent staining were performed to study the alterations of the expression level and the translocation of apoptosis-related proteins in co-treatment. In this study, co-treatment of with eugenol and CGM on SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensations, DNA fragmentation, the increase and decrease of Bax and Bcl-2, decrease of DNA content, the release of cytochrome c into cytosol, translocation of AIF and DFF40 (CAD) onto nuclei, and activation of caspase-3, caspase-6 caspase-7, caspase-9, PARP, Lamin A/C and DFF45 (ICAD) whereas each single treated SCC25 cells did not show or very slightly these patterns. Although the single treatment of 40 ${\mu}g$/ml CGM and 0.5 mM eugenol for 24 h did not induce apoptosis, the co-treatment of these reagents prominently induced apoptosis. Therefore our data provide the possibility that combination therapy with CGM and eugenol could be considered as a novel therapeutic strategy for human oral squamous cell carcinoma.

Apoptotic Effect of co-treatment with HS-1200 and Cisplatin on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line (HS-1200과 cisplatin의 병용처리가 사람구강암세포에 미치는 세포자멸사 효과에 대한 연구)

  • Kim, Duk-Han;Kim, In-Ryoung;Park, Bong-Soo;Ahn, Yong-Woo;Jeong, Sung-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.3
    • /
    • pp.221-233
    • /
    • 2013
  • Bile acids are polar derivatives of cholesterol essential for the absorption of dietary lipids and regulate the transcription of genes that control cholesterol homeostasis. Recently it have been identified the synthetic chenodeoxycholic acid (CDCA) derivatives HS-1200 and cisplatin showed apoptisis-inducing activity on various cancer cells in vivo and in vitro. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with HS-1200 and cisplatin on human tongue squamous cell carcinoma cells (SCC25 cells). To investigate whether the co-treatment with HS-1200 and cisplatin compared to each single treatment efficiently reduces the viability of SCC25 cells, MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis DNA hypoploidy. Westen blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) change were also assayed. In this study, co-treatment with HS-1200 and cisplatin on SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensations, DNA fragmentation, reduction of MMP and proteasome activity, the increase of Bax and the decrease of Bcl-2, decrease of DNA content, the release of cytochrome c into cytosol, translocation of AIF and DFF40 (CAD) onto nuclei, and activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD) whereas each single treated SCC25 cells did not show these patterns. Although the single treatment of $25{\mu}M$ HS-1200 and $4{\mu}g/ml$ cisplatin for 24 h did not induce apoptosis, the co-treatment of these reagents prominently induced apoptosis. Therefore our data provide the possibility that the combination therapy with HS-1200 and cisplatin could be considered as a novel therapeutic strategy for human squamous cell carcinoma.

Apoptotic effect of Pseudomonas aeruginosa exotoxin A in human tongue squamous cell carcinoma(SCC) 25 cells (Pseudomonas aeruginosa exotoxin A(PEA)가 사람혀 편평암종세포에서 나타나는 세포자멸사 작용)

  • Choi, Byul Bo-Ra;Kim, Gyoo-Cheon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.4
    • /
    • pp.601-608
    • /
    • 2014
  • Objectives : The purpose of the study is to examine the apoptotic effects of Pseudomonas aeruginosa exotoxin A(PEA) in squamous cell carcinoma(SCC) 25 cells. Methods : Cell growth reduction and apoptosis induced by PEA were confirmed by WST-1 assay, Hoechst 33258 staining, flow cytometry analysis, and Western blot assay. Results : The PEA treatment decreased the cell viability in a dose and time dependent manner: control; $100{\pm}0^e$(p<0.01), 0.1875 nM; $87{\pm}4.36^d$(p<0.01), 0.375 nM; $82{\pm}0.58^d$(p<0.01), 0.75 nM; $72{\pm}1.67^c$(p<0.01), 1.5 nM; $51{\pm}1.53^{bc}$(p<0.01), 7.5 nM; $31{\pm}1.20^{ab}$(p<0.01), 15 nM; $26{\pm}0.67^a$(p<0.01), control; $100{\pm}0^a$(p<0.05), 24 h; $51{\pm}1.53^b$(p<0.05), 48 h; $16{\pm}0.5^c$(p<0.05), 72 h; $12{\pm}1.67^d$%(p<0.05). The PEA was observed on SCC 25 cells with the half maximal inhibitory concentration(IC50) value of 1.5 nM at 24 hours. The PEA treated SCC 25 cells demonstrated several types of apoptotic indications, such as nuclear condensation, the increase of sub G1, and the cleavage of PARP-1 and DFF 45. Conclusions : PEA showed anti-cancer activity against SCC 25 cells via apoptosis. PEA may potentially contribute to human oral cancer treatment.