• Title/Summary/Keyword: 사공간특징

Search Result 2, Processing Time 0.015 seconds

An Adaptive ROI Detection System for Spatiotemporal Features (시.공간특징에 대해 적응할 수 있는 ROI 탐지 시스템)

  • Park Min-Chul;Cheoi Kyung-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.41-53
    • /
    • 2006
  • In this paper, an adaptive ROI(region of interest) detection system for spatialtemporal features is proposed. It utilizes spatiotemporal features for the purpose of detecting ROI. It is assumed that motion representing temporal visual conspicuity between adjacent frames takes higher priority over spatial visual conspicuity. Because objects or regions in motion usually draw stronger attention than others in motion pictures. In case of still images visual features that constitute topographic feature maps are used as spatial features. Comparative experiments with a human subjective evaluation show that correct detection rate of visual attention region is improved by exploiting both spatial and temporal features compared to the case of exploiting either feature.

  • PDF

Evaluation of the Resilient and Permanent Behaviors of Cohesive Soils (점성토의 회복 및 영구변형 특성 평가)

  • SaGong, Myung;Kim, Dae-Hyeon;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • Resilient modulus has been used for characterizing the stress-strain behavior of subgrade soils subjected to traffic loadings. With the recent release of the M-E Design Guide, highway agencies are further encouraged to implement the resilient modulus test to improve subgrade design. The subgrade design for the trackbed, however, is primarily relying on the static test results such as $K_{30}$ and deformation modulus, Ev. Therefore applicability of the resilient modulus for the design of trackbed needs to be evaluated. In this study, physical property tests, unconfined compressive tests and resilient modulus tests were conducted to assess the resilient and permanent strain behavior of 14 cohesive subgrade soils. A predictive model for estimating the resilient modulus is proposed based on the results of unconfined compressive tests and tangent elastic modulus, unconfined compressive strength, failure strain, secant modulus at peak, and yield strain. The predicted resilient moduli using the predictive models compared satisfactorily with measured ones. Although the permanent strain occurs during the resilient modulus test, the permanent behavior of subgrade soils is currently not taken into consideration.