Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2016.05a
/
pp.194-195
/
2016
IMO에서 규정하는 모든 교육 및 훈련을 이수한 전문 해기인력이 매년 배출되고 있지만, 해양사고의 발생은 끊이지 않고 있다. 이는 해양사고를 대처하는 해기사의 위험상황 대처 능력이 크게 개선되지 않았다는 점을 의미한다. 공통적으로 해기사에게 제공되는 교육 및 훈련뿐만 아니라 해기사 개개인의 위험요소를 파악하여 해당 위험 요소에 대한 매뉴얼을 제공할 수 있는 모델이 개발되면 해양사고를 대처할 수 있다. 이러한 모델을 개발하기 위하여 모델 구축에 필요한 데이터베이스(Data Base, D/B)가 필요하다. 이러한 D/B는 모델에 활용할 수 있도록 숫자로 표기된 것이어야 한다. 본 연구에서는 해양안전심판원에서 제공하는 해양사고 데이터를 수집, 분석하여 해양사고 예방을 위한 모델에 활용할 수 있는 해양사고 수량화 D/B를 구축하는 방법에 대하여 고찰하였다. 1차적으로 해양사고 수량화 D/B를 구축하였으나, 이의 유용성이나 목적에 적합한 D/B의 규모 등에 관한 연구는 추후에 계속 되어야 한다.
The paper describes on the implementation of marine casualty prediction model that is one of the main part of Korean MArine Casualty FOrecasting System (K-MACFOS). In this work, Cell Distributed Linear-In-the-Parameter (CD-LIP) model is proposed and discussed its usability with comparing Baltic model and revised LIP model. As evaluation results by regression analysis of variance, it is known that the CD-LIP model gives best performance to the marine casualty numerical D/B of the target sea area.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2003.05a
/
pp.60-65
/
2003
The paper describes on the implementation of marine casualty prediction model that is one of the main part of Marine Casualty Forecasting System (MCFS). In this work, Cell Distributed Linear-In-the Parameter (CD-LIP) model is developed and compared with Baltic model using regression analysis of variance. As comparing, it is known that the proposed CD-LIP model has less residual than the Baltic model and, it gives best performance to the marine casualty numeric D/B of target area.
Journal of The Korean Association For Science Education
/
v.37
no.4
/
pp.611-624
/
2017
The purposes of this study are to explore Iceberg(IB) model as a systems thinking analysis tool for high school students, suggest a systems thinking analysis method using rubrics and verify its validity and reliability. For this study, the theoretical basis was examined through literature analysis about IB model and rubrics of evaluating the systems thinking. And 6 high school students participated in IB model activity and were interviewed about polar climate change. In addition, quantitative tests using systems thinking scale were also conducted to support the results of the IB model activity analysis. Data obtained from IB model activity was analyzed by using the rubrics of evaluating system thinking developed by Hung (2008). The analysis results were reviewed by two professors to confirm the validity and reliability. In order to confirm the validity, correlation analysis were performed between the rubrics and the quantitative test results. Finding are as follows: Six students used the IB model to express their systems thinking in detail and the results of the systems thinking analysis of students using rubrics showed a distribution of 17~35 points. Furthermore, the results of correlation analysis between rubrics and systems thinking scale was highly correlated (Pearson product-moment is .856) on significance level from .05. Using the IB model introduced in this study, students express their systems thinking effectively and the results of the systems thinking analysis using IB model is considered to analyze validity and reliability. Based on the results of this study, implication suggests how to study the systems thinking in science education.
본 연구는 교통사고의 발생원인에 대한 인식유형과 감소대책에 대한 인지 유형별 영향요인의 정도를 분석하기 위하여 수량화이론 II류와 CHAID 분석법을 이용하여 분류모델과 판별모델을 구축하였다. 수량화이론 II류에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 판별모델은 전체 적중률이 78.4%로 매우 높게 나타났다. 편상관계수는 설명변수의 항목 중 학력, 성별, 운전경력 년 수, 소유 차종의 순으로 영향을 미치고 외적 변수인 교통사고 발생원인에 대한 유형에서는 기여 정도가 교통단속 부재 > 교통체계 미비 > 승용차 과다 사용 >잘못된 의식 때문의 순으로 나타났다. 교통사고 감소 대책에 대한 인지유형별 영향요인 판별모델은 전체 적중률이 59.9%로 높게 나타났으며, 편상관 계수는 학력, 성별, 운전경력 연수, 연령의 순으로 영향을 미치고 있고, 외적 변수인 교통사고 감소 대책에 대한 유형에서는 기여 정도가 교통단속 강화 > 대중교통수단 이용 유도 > 교통체계 개선 > 의식 개혁의 순으로 나타났다. 또한 CHAID 분석법에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 분류모델에 있어서는 예측변수로 학력, 연령, 성별, 통행수단의 네 가지 변수가, 교통사고의 감소 대책에 대한인지 유형별 영향요인 분류모델에 있어서는 학력, 운전경력 연수, 성별 그리고 통행수단의 네 가지 변수가 카이제곱 통계량 이 5%의 유의수준에서 유의한 것으로 판단되었다. 교통사고 발생원인 인식과 감소 대책의 인지 유형에 대한 빈도분석과 교차분석은 의식과 관련한 유형이 가장 높게 나타났으나 판별.분류모델에서는 교통단속과 관련한 유형이 기여 정도가 높고 의식 관련 유형이 상대적으로 낮게 나타나는 등 반대양상을 보이고 있어 심리적으로 내재되어 있고 표면에 잘 드러나지 않았던 의식 수준의 낮음이 분류모델을 통해서 명확하게 드러났다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.146-147
/
2023
해양사고는 도로교통과 달리 지속적으로 증가하고 있으며, 인명피해가 주로 발생하는 주요 사고의 치사율은 도로교통의 11.7배 이상이다. 해양사고는 외부 환경에 따라 사고 위치가 변하고 즉각적인 조치가 어려워 타 교통에 비해 대형 사고로 이어질 가능성이 매우 크다. 그러나 여전히 사고가 발생하고 난 후 대응하는 등 사후적 관리 단계에 무르고 있어 사고의 주요 요인을 사전에 식별·관리하는 선제적 관리단계로의 전환 필요성이 대두되고 있다. 따라서 본 연구에서는 해양사고 발생 지점 밀도 기반의 가변 공간 군집체계를 반영한 해양사고 예측모델을 개발하였다. 반복적인 공간 가산분석을 통해 밀도가 높을수록 작은 규모의 격자 체계를 가질 수 있도록 상세한 공간 군집체계를 구성하였으며, 단순 사고 위험도 예측뿐만 아닌 사고 인과관계를 설명할 수 있는 BN(Bayesian Network) 기반의 모형을 사용하여 해양사고 위험예측 모델을 개발하였다. 또한, Cost-of-Omission을 통해 해양사고 예측확률의 변화와 각 변수들의 영향력을 확인하였으며, 월별 해양사고예측 결과를 GIS를 활용하여 2D/3D 기반으로 시각화하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.3-4
/
2021
폐쇄된 터널 내부에서는 사고가 일어날 경우 외부에서는 터널 내 상황을 알 수가 없어 경미한 사고라 하더라도 대형 후속 2차 사고로 이어질 가능성이 크다. 또한영상탐지로사고 상황의 오검출을 줄이기 위해서, 본 연구에서는기존의 많은 CNN 모델 중 보유한 데이터에 가장 적합한 모델을 선택하는 과정에서 가장 좋은 성능을 보인 VGG16 모델을 전이학습 시키고 fully connected layer의 일부 layer에 Dropout을 적용시켜 Overfitting을일부방지하는 CNN 모델을 생성한 뒤Yolo를 이용한 영상 내 객체인식, OpenCV를 이용한 영상 프레임 내에서 객체의ROI를 추출하고이를 CNN 모델과 비교하여오검출을 줄이면서 사고를 검출하는 시스템을 제안하였다.
KIPS Transactions on Software and Data Engineering
/
v.10
no.8
/
pp.301-310
/
2021
The TATI model is a Traffic Accident Text to RGB Image model, which is a methodology proposed in this paper for predicting the severity of traffic accidents. Traffic fatalities are decreasing every year, but they are among the low in the OECD members. Many studies have been conducted to reduce the death rate of traffic accidents, and among them, studies have been steadily conducted to reduce the incidence and mortality rate by predicting the severity of traffic accidents. In this regard, research has recently been active to predict the severity of traffic accidents by utilizing statistical models and deep learning models. In this paper, traffic accident dataset is converted to color images to predict the severity of traffic accidents, and this is done via CNN models. For performance comparison, we experiment that train the same data and compare the prediction results with the proposed model and other models. Through 10 experiments, we compare the accuracy and error range of four deep learning models. Experimental results show that the accuracy of the proposed model was the highest at 0.85, and the second lowest error range at 0.03 was shown to confirm the superiority of the performance.
Proceedings of the Korean Nuclear Society Conference
/
1995.05a
/
pp.550-555
/
1995
국내 Westinghouse형 및 CE형 가압 경수로의 Non-LOCA 및 성능 분석을 수행할 수 있는 범용 전산 코드 TASS 1.0 코드를 한국원자력연구소에서 개발하였다. TASS 1.0의 노심 출력 계산은 Point Kinetics 모델과 1차원 확산 모델이 함께 내장되어 있어 축방향 출력 분포가 변하는 반응도 관련 사고 및 주증기관 파단 사고들에 대해서는 1차원 확산 모델을 사용하여 노심의 출력 계산이 가능하도록 개발되었다. 1차원 확산 모델의 적용 가능성 및 효과를 평가하기 위하여 Westinghouse형 발전소인 고리 3호기 7주기 및 CE형 발전소인 영광 3호기 1주기 전출력 제어봉 인출 사고에 대한 비교 분석 계산을 수행하였다. 비교 분석 계산 결과 1차원 확산 모델이 Point Kinetics 모델에 비해 DNBR 관점에서 보다 많은 운전 및 열적 여유도를 확보함이 판명되어 반응도 관련 사고 해석에서의 TASS 1.0 1차원 확산모델의 개선 효과를 입증하였다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2017.11a
/
pp.259-261
/
2017
SRK-BB(Skill-, Rule-, Knowledge-Based Behavior)는 주어진 사건을 처리할 때 인간이 행하는 행동을 체계적으로 식별하기 위한 하나의 이론이다. 이러한 SRK-BB에 대한 결과는 주어진 임무에 대한 '성공'과 '실패'로 나타낼 수 있다. 만약, 어느 사건에 대한 SRK-BB를 식별할 수 있고, 이에 대한 '성공/실패'의 결과를 알 수 있다면, SRK-BB를 이용하여 이들 사이에 연계된 확률적인 관계를 정립할 수 있다. 한편, 해양사고의 결과를 분석한 해양안전심판원의 재결서 또는 재결요약서에는 다양한 사고(즉, 실패한 사건)에 대해서 해기사가 어떠한 행동을 취했는지 상세하게 기록되어 있다. 이러한 해양안전심판원의 자료를 분석하면 실패한 해양사고에 대한 방대한 해기사의 SRK 분포를 확보할 수 있다. 본 연구의 목적은 다양한 해양사고에 나타난 해기사들의 행동을 SRK-BB로 식별한 후 해기사들이 추후 야기할 수 있는 인적오류를 예측하기 위한 모델 구축에 있다. 인적오류 모델을 구축하기 위해서는 우선 해양사고에 포함된 SRK 분포 분석이 필요하고, 시스템적인 입출력 관계를 통해서 SRK에 의한 인적오류의 결과를 예측하기 위한 예측 모델이 필요하다. 본 연구에서는 해기사의 인적오류에 의한 사고를 어떻게 SRK 분포를 이용하여 예측할 수 있는지에 대한 개념을 설명하고, 해양사고 데이터에서 획득한 SRK 분포의 의미와, SRK 분포를 이용하여 어떻게 해기사가 야기할 사고를 예측할 수 있는지에 대한 연구접근 방법을 소개하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.