In this paper, we propose a novel approach which models multilingual story link detection by adapting the features such as timelines and multilingual spaces as weighting components to give distinctive weights to terms related to events. On timelines term significance is calculated by comparing term distribution of the documents on that day with that on the total document collection reported, and used to represent the document vectors on that day. Since two languages can provide more information than one language, term significance is measured on each language space and used to refer the other language space as a bridge on multilingual spaces. Evaluating the method on Korean and Japanese news articles, our method achieved $14.3{\%}\;and\;16.7{\%}$ improvement for mono- and multi-lingual story pairs, and for multilingual story pairs, respectively. By measuring the space density, the proposed weighting components are verified with a high density of the intra-event stories and a low density of the inter-events stories. This result indicates that the proposed method is helpful for multilingual story link detection.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.101-105
/
2018
이 논문은 가장 잘 알려진 어휘부중 하나인 워드넷의 활용 범위 확장을 위해 워드넷 신셋에 "사건구조 프레임(Event Structure Frame)"을 주석하는 연구에 관한 것이다. 워드넷을 비롯하여 현재 사용되고 있는 어휘부는 풍부한 어휘의미정보가 구조화되어 있지만, 사건구조에 관한 정보를 포함하고 있지는 않다. 이 연구의 가장 큰 기여는 워드넷에 사건구조 프레임을 추가함으로써 워드넷과의 연결만으로 핵심적인 어휘의미정보를 모두 추출할 수 있도록 해준다는 점이다. 예를 들어 텍스트 추론, 자연어처리, 멀티 모달 태스크 등은 어휘의미정보와 배경지식(상식)을 이용하여 태스크를 수행한다. 워드넷에 대한 사건구조 주석은 자동사건구조 주석 시스템인 GESL을 이용하여 워드넷 신셋에 있는 예문에 먼저 자동 주석을 하고, 오류에 대해 수동 수정을 하는 반자동 방식이다. 사전 정의된 23개의 사건구조 프레임에 따라 예문에 출현하는 타겟 동사를 분류하고, 해당 프레임과 매핑한다. 현재 이 연구는 시작 단계이며, 이 논문에서는 빈도 순위가 가장 높은 100개의 동사와 각 사건구조 프레임별 대표 동사를 포함하여 총 106개의 동사 레마에 대해 실험을 진행하였다. 그 동사들에 대한 전체 워드넷 신셋의 수는 1337개이다. 예문이 없어서 GESL이 적용될 수 없는 신셋을 제외하면 1112개 신셋이다. 이 신셋들에 대해 GESL을 적용한 결과 F-Measure는 73.5%이다. 향후 연구에서는 워드넷-사건구조 링크를 계속 업데이트하면서 딥러닝을 이용해 GESL 성능을 향상 할 수 있는 방법을 모색할 것이다.
본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.
Communications of the Korean Institute of Information Scientists and Engineers
/
v.22
no.4
/
pp.28-34
/
2004
사건 탐색 및 추적(TDT: Topic Detection and Tracking) 연구 [1]은 전세계 각 나라에서 매일 보도 되고 있는 신문이나 방송 뉴스 기사에서 "어떤 중요한 사건이 발생했는가\ulcorner"또는 "새로운 사건이 일어났는가\ulcorner"와 같이 그날 처음 발생한 사건을 탐색하거나, 같은 사건을 다루는 기사들을 탐색하거나, 예전에 발생한 사건과 관련된 사건인지를 추적해 나가는 것이다.된 사건인지를 추적해 나가는 것이다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.05a
/
pp.108-113
/
2000
자동사의 두 하위부류, 비대격(unaccusative) 동사와 비능격 (unergative)동사는 Perlmutter(1978)의 비대격 가설 (Unaccusative Hypothesis) 이후 여러 관점에서 활발히 노의 되어왔다. 한국어에서는 사건구조적 측면에서 두 부류가 차이를 보이며, 이런 사실은 인간의 인지작용과 밀접한 관련을 맺는다. 사건구조를 과정(process)사건과 상태(state)로 가정할 때 비능격 동사는 과정사건이, 비대격 동사는 상태사건이 부각된다. 비대격 동사도 두 가지 부류로 나뉠 수 있는데, '도착하다'처럼 과정사건이 언어표현에서 중시되지 않고 결과적인 상태부분만 중요시 되는 유형(unacc_type_1)과 '녹다'처럼 과정사건도 중시되는 사건 구조를 지닌 유형(unacc_type_2)이다. 결국 비대격 동사는 결과상태를 중시하는 사건구조를 중요시 하지만 과정사건의 지각 정도에 따라 다른 양상을 보인다. 한편 비대격 동사는 사동사와도 밀접한 연관 관계를 지닌다. 많은 논의에서 비대격/사동의 교체를 논리적 다의어로 보고 분석을 시도해 왔다. 따라서 사동사를 중심으로 분석한 경우와 비대격 동사를 중심으로 분석한 경우가 있다. 본고에서는 사동분석(causative analysis)은 한국어 기술에는 적절치 않다고 판단한다. 사동분석에서 도입하는 행동주의 사건유발부분이 반드시 비대격 동사의 표현에 필수적인 것은 아니기 때문이다. 끝으로 Pustejovsky(1995)의 생성어휘부(Generative Lexicon) 이론을 한국어에 맞게 확장·수정한 이정민·강범모·남승호(1997)의 모형에 따라 두 가지 유형의 비대격 동사의 어휘 의미구조를 표상한다.
KIPS Transactions on Software and Data Engineering
/
v.1
no.1
/
pp.69-74
/
2012
Many internet users attempt to focus on the issues which have posted on social network services in a very short time. When some social big issue or event occurred, it will affect the number of comments and retweet on that day in twitter. In this paper, we propose the method of extracting core events based on timeline analysis, sentiment feature and retweet information in twitter data. To validate our method, we have compared the methods using only the frequency of words, word frequency with sentiment analysis, using only chi-square method and using sentiment analysis with chi-square method. For justification of the proposed approach, we have evaluated accuracy of correct answers in top 10 results. The proposed method achieved 94.9% performance. The experimental results show that the proposed method is effective for extracting core events in twitter corpus.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.22-29
/
2003
시간정보는 사건 탐지/추적 시스템은 물론 정보 추출, 질의/응답 시스템 등에서 매우 중요한 역할을 한다. 본 연구에서는 한국어 신문 기사를 대상으로 시간 표현을 추출하고 정규화한 후 사건 관련 동사와 연결하는 자동화된 방법들을 제안하였다. 시간 표현을 추출하기 위해서 품사정보로 구축된 패턴과 시간 표현 어휘가 사용되었고, 정규화 과정과 사건 관련 동사와의 연결을 위한 규칙이 만들어졌다. 한국어 신문을 대상으로 제안한 방법의 단계별 평가를 수행하였고, 제안하는 방법의 확장성을 보이기 위해 서로 다른 도메인에도 실험을 하였다.
Korean passive verbs are derived from their corresponding active verbs by suffixation or by adding endings and auxiliaries to their stems. Therefore. we assume p passive verbs share some lexical informations with their active counterparts. This paper extending the Generative Lexicon theory of Pustejovsky (995). aims to characterize the argument realization patterns of Korean passive verbs focusing on the case alternation a and to propose their lexical semantic structures which account for the syntactic behavior.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
1997.11a
/
pp.163-167
/
1997
인간이 움직이는 물체에 탑승하고 있거나 움직이는 물체를 잡고 있을때 어떤 종류의 감성을 느끼게 된다. 물체의 속도, 가속도, 또는 강성, 감쇠 등으로 인하여 인간은 쾌, 불쾌감을 갖게 되며, 본 논문에서는 이러한 감성을 운동감이라 정의한다. 이러한 운동감을 공학적으로 유용한 데이터로 만들기 위해 운동감 어휘를 도입하여 정량화를 시도하였으며, 복수의 운동감 어휘를 연산할 수 있는 방법과 가중치를 구할 수 있는 방법을 제시하고자 한다. 본 연구에서는 귀의 전정 기관에서 느끼는 몸 전체의 평형 감각 및 운동 감각은 고려의 대상으로 제외하며, 팔에 국한하여 피부 감각과 팔 근육의 위치 인지 등으로 인한 운동감을 해석 대상으로 한다. 해석의 편의성을 위하여 팔을 제외한 몸의 움직임은 없는 상태로 유지하며, 팔의 2차원 운동만을 고려하기고 한다. 퍼지는 사람의 언어와 같이 모호한 사건을 해석하기 위한 이론이다. 모호한 정도를 표현하는 방법으로 퍼지 정도척도(measutr of fuzziness)와 퍼지척도(fuzzy measure)가 많은 분야에서 이용되고 있다. 하지만 운동감에 대한 연구는 미비한 실정이므로 불확실성을 평가하는 퍼지 이론을 이용하여 운동감을 해석하려 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.