• 제목/요약/키워드: 사각탱크

검색결과 20건 처리시간 0.021초

배플의 높이 변화에 따른 3 차원 사각 탱크 내부의 슬로싱 현상에 관한 수치적 연구 (Numerical Study on Liquid Sloshing in the Three-dimensional Rectangular Tank with Various Baffle Heights)

  • 이창열;윤현식;정재환
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.38-46
    • /
    • 2010
  • This study aims at investigating the effect of the baffle height on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finite-volume method which has been well verified by comparing with the results of the relevant previous researches. The ratio of the baffle height ($h_B$) to filling level (h) has been changed in the range of $0{\leq}h_B/h{\leq}1.2$ to observe the effect on the impact loads on the side wall and free surface behavior. Generally, as baffle height increases, the impact pressure on the wall decreases and the deformation of free surface becomes weaker. However it seemed that a critical ratio of the baffle height existed to reveal the lowest impact pressure on the wall. Consequently, $h_B/h=0.8$ among $h_B/hs$ considered in the study showed the lowest impact pressure.

챔퍼가 3차원 사각 탱크 내부의 액체 슬로싱에 미치는 영향 (Effect of Chamfering Top Corners on Liquid Sloshing in the Three-dimensional Rectangular Tank)

  • 정재환;이창열;윤현식
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.508-516
    • /
    • 2010
  • This study aims at investigating the effect of the chamfer on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finitevolume method which has been well verified by comparing with the results of the relevant previous researches. The effects of the chamfering top corners of the tank on the liquid sloshing characteristics have been investigated. The angle of the chamfering top corners (${\theta}$) has been changed in the range of $0^{\circ}{\leq}{\theta}{\leq}60^{\circ}$(${\Delta}{\theta}=15^{\circ}$) to observe the free surface behavior, and the effect on wall impact load. Generally, as the angle of the chamfering top corners increases, the impact pressure on the upper knuckle point decreases. However it seemed that a critical angle of the chamfering top corners exists to reveal the lowest impact pressure on the wall.

가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구 (NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL)

  • 정재환;이창열;윤현식;김효주
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

사각탱크 내부의 기포구동유동에 대한 동특성 연구 (Dynamic Analysis of Bubble-Driven Liquid Flows in a Rectangular Tank)

  • 김상문;이승재;김현동;김종욱;김경천
    • 한국가시화정보학회지
    • /
    • 제8권1호
    • /
    • pp.31-38
    • /
    • 2010
  • An experimental study to evaluate dynamic structures of flow and turbulence characteristics in bubble-driven liquid flow in a rectangular tank with a varying flow rate of compressed air is conducted. Liquid flow fields are measured by time-resolved particle image velocimetry (PIV) with fluorescent tracer particles to eliminate diffused reflections, and by an image intensifier to acquire enhanced clean particle images. Instantaneous vector fields are investigated by using the two frame cross-correlation function and bad vectors are eliminated by magnitude difference technique. By proper orthogonal decomposition (POD) analysis, the energy distributions of spatial and temporal modes are acquired. When Reynolds number increases, bubble-induced turbulent motion becomes dominant rather than the recirculating flow near the side wall. The total kinetic energy transferred to the liquid from the rising bubbles shows a nonlinear relation regarding the energy input because of the interaction between bubbles and free surface.

사각탱크내의 슬로싱 현상에 기인한 벽면운동에 대한 수치모사 (Numerical simulation of hydroelastic effects of sloshing phenomena in a rectangular tank)

  • 하민호;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.534-537
    • /
    • 2012
  • Hydroelastic effects on sloshing phenomena in a rectangular tank are numerically investigated. The dimension of the tank is $1000mm{\times}600mm$, and the filling ratio of water is 20% of tank height. One of the side walls of tank is assumed to be flexible. The tank is excited into sway motion with amplitude of 100mm and frequency of 0.53Hz that is first natural frequency of water inside the tank. Prediction results for time histories of pressure and displacement of flexible and rigid walls are compared to quantitatively assess hydroelastic effects on sloshing phenomena.

  • PDF

경계조건과 두께 변화에 따른 사각탱크의 진동 특성 (Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition)

  • 배성용
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

사각 탱크 내 슬로싱 해석을 위한 입자법 시뮬레이션 (Particle-based Simulation for Sloshing in a Rectangular Tank)

  • 황성철;이병혁;박종천;성홍근
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.31-38
    • /
    • 2010
  • The Floating storage and re-gasification unit (FSRU), which has large cargo storage tanks, is a floating liquefied natural gas (LNG) import terminal. The sloshing motion in tanks that are partially filled with LNG can cause impact pressure on the containment system and affect the global motion of the FSRU. Therefore, the accurate prediction of sloshing motion has been a significant issue in the offshore gas production industry. In this paper, a particle method based on the moving particle semi-implicit (MPS) method proposed by Koshizuka and Oka (1996) has been modified to predict sloshing motion accurately in a rectangular tank with the filling ratio of water. The simulation results, including the violent sloshing of the fluid, were validated by comparison with the original MPS method.

사각헝 탱크 구조의 접수 진동 특성에 관한 연구 (Analytical and Experimental Study on Vibration Characteristics for Rectangular Tank Structure Filled with Fluid)

  • 최수현;김극수;손성완
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.195-203
    • /
    • 2002
  • In the engine room and the aft part areas of the ship, there exist so many tank structures contacting with fresh water or sea water or oil. If these structures exhibit excessive vibrations during the sea trials, it takes a lot of cost, time and effort to improve vibration situation because the reinforcement work requires emptying the fluid out of the tanks, additional welding and special painting. It is therefore very important to predict a precise vibration characteristics of the tank structures at the design stage, however it is not easy to estimate vibration characteristics of the structures because of difficulties for accurate evaluation of the added (or virtual) mass effect due to the fluid inside the tank. In this paper, numerical and experimental approaches have been performed to present same fundamental data necessary for anti-vibration design of tank structures contacting with fluid, by investigating vibration behaviors of rectangular tank structure for various water depths.

레벨셋법을 이용한 2 차원 사각 탱크 내부의 슬로싱 특성에 관한 수치적 연구 (A Numerical Study on the Sloshing Characteristics in a Two-dimensional Rectangular Tank Using the Level Set Method)

  • 윤현식;이정민;전호환;이현구
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.132-143
    • /
    • 2008
  • The sloshing phenomena in a two-dimensional rectangular tank are investigated using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical results, which gives a good agreement. We present the streamlines pattern, free surface shape, maximum free surface elevation and pressure fluctuation patterns in the tank under the pitch and surge motions with various frequencies. These two different motions cause the different flow structures in the tank. The time variations of surface elevation and pressure at the different locations in the tank strongly depend on the exciting frequency of tank moving.

보리의 미맥종합처리 시설을 이용한 산물처리 실태 (Post Harvest Management of Bulk-Harvested Barley Using Rice and Barley Processing Complex)

  • 이춘우;윤의병;구본철;손영구;백성범
    • 한국작물학회지
    • /
    • 제47권3호
    • /
    • pp.250-253
    • /
    • 2002
  • 미곡종합처리장을 이용한 보리 산물수매 체계를 조사 분석하여 보리의 산물수매를 확대를 위한 기초자료를 제공하고자 실시하였다. 1.보리의 입고는 오전 10시부터 시작되었고, 오후 3시 이후에는 전체 산물 수매량의 61.1%가 입고되었다. 입고된 보리의 일별 평균 수분함량은 15.8-29.6%범위이었고, 건조기에 투입된 보리의 날짜별, 농가별, 필지별 수분함량의 변이가 켰다. 2. 건조 시간은 투입되는 보리의 수분함량에 따라 차이가 많았으며, 평균 건조시간은 9.5시간, 평균 건감율은 0.89% 이었다. 수분함량이 너무 높으면 건조시간이 많이 소요되고 투입구나 저류부의 탱크를 막는 고장의 원인이 되고, 품질이 떨어지므로, 후작물 재배에 지장이 없는 한 늦게 수확하는 것이 좋을 것으로 생각되었다. 3. 입고 보리에 함유된 이물질량은 보리의 수분함량 19.7-30%범위에서는 0.3-l.2%로 별 차이가 없었으나, 수분함량이 30%이상이 되면 급격히 증가하여 수분함량 38.9%에서는 이물질의 양이 5.9%로 많아졌다. 이물질 함량을 낮추기 위하여 분리능력이 좋은 조선기로 교체가 필요하였다. 4. 건조비용은 14% 종자수분 함량 환산 중량 기준으로 24% 이상은 50원, 17%이하는 30원이었다. 저장은 실내 사각빔과 폴리 콘 백에 담아 평상창고에 보관하였다. 저장 중 품질 저하를 막기 위하여 실내 또는 실외 저장사일로의 증설이 필요하였다.