• Title/Summary/Keyword: 사각탱크

Search Result 20, Processing Time 0.025 seconds

A Study on Application of PIV to Sloshing Phenomenon inside Rectangular Tank (장방형탱크 내부 슬로싱 현상에 관한 PIV적용에 관한 연구)

  • Kim, K.S.;Choi, J.Y.;Cho, D.H.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.85-86
    • /
    • 2009
  • The sloshing phenomenon can be defined as the nonlinear movement of the free-surface of liquids inside tanks. It generates dynamic loads on the tank structure and thus becomes a problem of relative importance in the design of marine structures. The present study describes a experiment of the sloshing of flows with free-surface which contained in a rectangular tank moving in pitching motion.

  • PDF

사각탱크의 벽면에 설치된 배플 주위 비정상유동의 속도계측에 관한 연구

  • Kim, Gwang-Seon;Lee, Cheol-Hui;O, U-Jun;Choe, Min-Seon;Lee, -GyeongU
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.245-246
    • /
    • 2009
  • 횡요동을 하는 13.5도의 모서리 경사각을 갖는 사각탱크 내에서 발생하는 유체의 슬로싱에 대해 비정상 현상 규명이 가능한 PIV기법을 적용하여 실험적으로 고찰하였다. 내부 액체의 유통현상을 계측한 결과, 0.6Hz와 l.2Hz의 주기를 갖는 실제 운동 상황을 모사한 운동 중의 속도분포를 계측 할 수 있는 기술을 확보하였으며 바닥중앙에 설치된 배플 주위 유동장을 해석하였다.

  • PDF

On the Prediction of Inner Pressure for the Tank in Rolling Motion (동요하는 탱크의 내부 변동압력 추정에 관한 연구)

  • Lee, Seung-Keon;Sea, Young-seok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.459-464
    • /
    • 2003
  • The inner liquid pressure of an airtight tank in rolling motions is investigated by means of forced oscillation tests, and the simple method to estimate the inner liquid pressure is proposed. A rectangular solid tank, which is fully filled with water, was used in the forced oscillation test of rolling motion. The inner pressure variations in time were measured at several points on the inner walls of tank. Measured pressures are compared with the calculated ones, and estimation methods of the inner liquid pressure of the tank in rolling motion are studied based on the considerations of the origin of pressure.

Study on Sloshing Behaviors in Liquid Storage Tank with Rectangular Cross Section (사각단면 액체저장탱크에서의 슬로싱 거동 연구)

  • 윤성호;이은동;박기진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1087-1090
    • /
    • 2003
  • In this study, experimental procedures were suggested to investigate the sloshing behavior of a liquid storage tank subjected to inevitably external vibrating conditions. For this purpose. liquid storage tank with rectangular cross section was made of an acrylic resin for the visualization of liquid fluctuation. A specially designed vibrator was used to provide a specified vibrating condition to the liquid storage tank. Extrapolation technique was applied to determine sloshing natural frequency by using various sloshing frequencies at each vibrating displacement and liquid contents at a fixed vibrating frequency. Sloshing mode was also determined from continuous images or liquid fluctuation captured from a video camera. In addition, change in the height of the liquid free surface was measured by using a floating target and a laser displacement sensor. It is found that the suggested method can be applicable to identify the sloshing behavior of liquid storage tank with rectangular cross section.

  • PDF

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

Simulation of Membrane Sloshing Tank by Using MPS (입자법을 이용한 멤브레인 타입 슬로싱 시뮬레이션)

  • Kim, Kyung Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.117-122
    • /
    • 2019
  • In the field of fluid dynamics, the sloshing effects are most common and significant problem. It is usually appeared in the tank filled with fluid which is on the main structure, thus, sloshing effects and its impact load may affect to entire system. For the sloshing effects analysis, impact loads due to tank motion is generally investigated theocratically, experimentally and numerically. The difficulty of sloshing phenomenon is non-linearity induced by large deformation at the free-surface. In this regard, it is well known issue that the repeatability on the sloshing problems is very low. In this study, moving particle semi-implicit method was employed to simulate sloshing problem and then the results were compared with corresponding experiments captured by high accuracy high speed camera. The results from numerical simulation was compared to experimental results.

Finite Element Stress Analysis of Large Sized Rectangular Water Tank Structures Made of Stainless Steel Materials (대용량 스테인리스 강재 사각형 물탱크 구조의 유한요소 응력해석)

  • Son, Byung-Jik;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • The finite element stress analysis of large sized rectangular water tank structures made of stainless steel materials is carried out for various combined load cases. The combined load cases for a large size of 5,000ton are further determined using the specification(KS B6283) established from the Korean Standards Association. The changed water capacity due to the size of reservoirs could be heavily dependent for evaluating seismic effects, especially for large reservoirs. For the better numerical efficiency, the rectangular panels are modelled using the ANSYS ADPL module. The numerical results obtained for different load cases mainly show the effect of the interactions between the different load combination and other various parameters, for example, the water capacity, and different stainless steel materials. The structural performance for various load combinations is also evaluated.

Structural Analysis for Design Improvement of Stainless 5,000ton Rectangular Water Tank Structures (5,000톤급 스테인리스 사각형 물탱크 구조의 설계 개선을 위한 구조해석)

  • Son, Byung-Jik;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.44-50
    • /
    • 2015
  • The finite element analysis of large sized rectangular water tank structures made of stainless steel materials is carried out for various combined load cases. The combined load cases for a large size of 5,000ton are further determined using the specification(KS B 6283) established from the Korean Standards Association. For the better numerical efficiency, the rectangular panels are modelled using the ANSYS program. The numerical results obtained for different load cases show as follows. In order to resist the snow load, it takes the influence of the gap than the size of the column. Also, in order to resist the water pressure, it shall increase the thickness of the wall. But, increasing the thickness of the wall is considerably less economical. Therefore, the angle with big thickness should be placed right next to the wall.