• Title/Summary/Keyword: 뿌리생육

Search Result 1,035, Processing Time 0.02 seconds

Basic Studies of Korean Native Clerodendron trichotomum Thunberg for Landscape Uses (전통식물 누리장나무의 조경용 소재개발을 위한 기초연구)

  • Han, In-Song;Ha, Yoo-Mi;Kim, Dong-Yeob;Lee, Bong-Ha
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.130-138
    • /
    • 2011
  • This study was carried out to investigate growth characteristics and propagation methods of Clerodendron trichotomum for landscape uses. The results are obtained as follows: In the first place, Korean native C. trichotomum was printed in the "Enumeration of plants in Chosun" in 1937 by Tae Hyun Chung. C. trichotomum is a shrub with round shape. This is noted for its late summer flowers, showy fruit and malodorous foliage. White flowers in long-peduncled cymes bloom in the upper leaf axils from late summer into fall. Flowers are followed by small bright blue fruits, each subtended by a fleshy red calyx. C. trichotomum showed high seed germination rate and greater shoot length in plug box than in normal seeding bed. The rooting rate of C. trichotomum according to cutting date was highest on July 7. The optimum date for cutting was on July 7~10 when the shoots were more hardened. Soil acidity ranged from pH 4.58 to 5.52. The most effective method for rooting of C. trichotomum was treatment with 1,000 ppm IBA on July 7 cuttings, which showed rooting rate of over 90%. Korean native C. trichotomum was successfully propagated through soft cutting and seed.

Importance and Priority of Indicators for Selection of Plant Species for Ecological Restoration (생태복원용 식물종 선정을 위한 지표의 중요도·우선순위)

  • Sung, Jung-Won;Shin, Hyun-Tak;Yu, Seung-Bong;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.327-337
    • /
    • 2022
  • Ecological restoration is considered a good means to prevent biodiversity loss in terms of the ecosystem's health and sustainability. However, there are difficulties in putting it into practice as there is no comprehensive and objective standard for the selection of plant species, such as environmental, ecological factors, and restoration goal setting. Therefore, this study developed an evaluation index necessary for selecting plant species for restoration using the Delphi method that synthesizes the opinions of the expert group. A survey with 38 questionnaires was conducted twice for experts in ecological restoration, etc., and the importance and priority of evaluation indicators were analyzed by dividing the restoration targets into inland and island regions. The result of the importance analysis showed that "native plants" had the highest average of 4.9 among the evaluation indices in both inland and island regions, followed by "seed security", "propagation", and "root growth rate". In the inland region, the index priority was analyzed in the order of "native plants", "appearance frequency", "root growth rate", "distribution range", and "seed security" in the island region, it was analyzed in the order of "native plants", "root growth rate", "appearance frequency", "distribution range", and "tolerance", showing slight differences between the two indicators. As a result of the importance and priority indicator analysis, we set the mean importance and priority of 4.1 and 2.9, respectively, in the inland region and 4.2 and 2.9, respectively, in the island region. As for the criteria of selecting plant species for ecological restoration, the "native plants" had the highest importance and priority. "Seed securing", 'viability", "topography", "proliferation", "tolerance", "soil conditions", "growth characteristics", "early succession", "distribution range", "appearance frequency", and "germination rate" were classified into subgroups of low importance and priority. The lowest indicators were "final stage of succession", "transition period", 'transition stage", "root", "reproduction", "soil", "appearance", "technology", "landscape", "climate", and "germination rate". We expected that the findings through objective verification in this study would be used as evaluation indicators for selecting native plant species for ecological restoration.

Quality and Fruit Productivity of the Second Truss Blooming Seedlings Depending on Concentration of Nutrient Solution in Cherry Tomato (양액 농도에 따른 방울토마토 2화방 개화묘의 소질 및 과실 생산성)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.230-236
    • /
    • 2022
  • This study was carried out to produce two-flowered seedlings, harvest them early in a greenhouse, and extend the harvest period. This study was carried out to effectively produce the second truss blooming seedlings to harvest tomatoes early and extend the harvest period. For production of the second truss blooming seedlings (one stem), the nutrient solution EC was supplied at 1.5, 2.0, 2.5 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 60 days, which was 20-40 days longer than conventional seedlings, and 10 days longer than the first truss blooming seedlings (cube seedlings). The plant height was 78 and 77 cm in EC 2.5 dS·m-1 and dynamic management respectively, which was shorter than EC 1.5 dS·m-1 with 88 cm. As for the EC in the cube before formulation, dynamic management had the highest EC 5.5 dS·m-1, and the cube supplied with EC 1.5 dS·m-1 had the lowest. The production yield by treatment did not a difference among in the second truss blooming seedlings, but the first truss blooming seedlings showed lower productivity than second truss blooming seedlings. The second truss blooming seedling were harvested 35 days after planting on June 4, the first harvest date, and the first truss blooming were harvested in 42 days on June 11th. There was no difference in plant height and root growth due to bending at frequency planting. In the study on the production of the second truss blooming seedlings (two stem), the nutrient solution EC was supplied under 2.0, 2.5, 3.0 dS·m-1, and dynamic management (3.0 → 3.5 → 4.5 dS·m-1). The seedling period was 90 days, which was 40-50 days longer than conventional seedlings and 10 days longer than the first truss blooming seedlings (cube seedlings). Plant height was 80 and 81 cm in EC 2.0 dS·m-1 and 2.5 dS·m-1 respectively, but was the shortest at 73 cm in dynamic management. EC in the medium increased as the seeding period increased in all treatments. The dynamic management was the highest with EC 5.1 dS·m-1. There was no difference in yield among EC treatments in the second truss blooming seedlings, which had a longer seeding period of about 10 days, produced 15% more than the first truss blooming seedlings. In order to shorten the plant height of the second truss blooming seedlings, it is judged that the most efficient method is increasing the concentration of nutrient solution.

Relationships between Micronutrient Contents in Soils and Crops of Plastic Film House (시설재배 토양과 작물 잎 중의 미량원소 함량 관계)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.217-227
    • /
    • 2006
  • Micronutrient status in soils and crops of plastic film house and their relationship were investigated. Total 203 plastic film houses were selected (red pepper, 66; cucumber, 63; tomato, 74) in Yeongnam region and soil and leaf samples were collected. Hot-water extractable B and 0.1 N HCl extractable Cu, Zn, Fe, and Mn in soil samples and total micronutrients in leaf samples were analyzed. Contents Zn, Fe, and Mn in most of the investigated soils were higher than the upper limits of optimum level for general crop cultivation. Contents of Cu in most soils of cucumber and tomato cultivation were higher than the upper limit of optimum level, but Cu contents in about 30% of red pepper cultivation soils were below the sufficient level. Contents of B in most soils of cucumber and tomato were above the sufficient level but in 48% of red pepper cultivation soils B were found to be deficient. Micronutrient contents in leaf of investigated crops were much variable. Contents of B, Fe, and Mn were mostly within the sufficient levels, while in 71% of red pepper samples Cu was under deficient level and in 44% of cucumber samples Cu contents were higher than the upper limit of sufficient level. Contents of Zn in red pepper and cucumber samples were mostly within the sufficient level but in 62% of tomato samples Zn contents were under deficient condition. However, any visible deficiency or toxicity symptoms of micronutrients were not found in the crops. No consistent relationships were found between micronutrient contents in soil and leaf, and this indicates that growth and absorption activity of root and interactions among the nutrients in soil might be important factors in overall micronutrient uptake of crops. For best management of micronutrients in plastic film house, much attention should be focused on the management of soil and plant characteristics which control the micronutrient uptake of crops.

Soil Physical Properties of Arable Land by Land Use Across the Country (토지이용별 전국 농경지 토양물리적 특성)

  • Cho, H.R.;Zhang, Y.S.;Han, K.H.;Cho, H.J.;Ryu, J.H.;Jung, K.Y.;Cho, K.R.;Ro, A.S.;Lim, S.J.;Choi, S.C.;Lee, J.I.;Lee, W.K.;Ahn, B.K.;Kim, B.H.;Kim, C.Y.;Park, J.H.;Hyun, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.344-352
    • /
    • 2012
  • Soil physical properties determine soil quality in aspect of root growth, infiltration, water and nutrient holding capacity. Although the monitoring of soil physical properties is important for sustainable agricultural production, there were few studies. This study was conducted to investigate the condition of soil physical properties of arable land according to land use across the country. The work was investigated on plastic film house soils, upland soils, orchard soils, and paddy soils from 2008 to 2011, including depth of topsoil, bulk density, hardness, soil texture, and organic matter. The average physical properties were following; In plastic film house soils, the depth of topsoil was 16.2 cm. For the topsoils, hardness was 9.0 mm, bulk density was 1.09 Mg $m^{-3}$, and organic matter content was 29.0 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.32 Mg $m^{-3}$, and organic matter content was 29.5 g $kg^{-1}$; In upland soils, depth of topsoil was 13.3 cm. For the topsoils, hardness was 11.3 mm, bulk density was 1.33 Mg $m^{-3}$, and organic matter content was 20.6 g $kg^{-1}$. For the subsoils, hardness was 18.8 mm, bulk density was 1.52 Mg $m^{-3}$, and organic matter content was 13.0 g $kg^{-1}$. Classified by the types of crop, soil physical properties were high value in a group of deep-rooted vegetables and a group of short-rooted vegetables soil, but low value in a group of leafy vegetables soil; In orchard soils, the depth of topsoil was 15.4 cm. For the topsoils, hardness was 16.1 mm, bulk density was 1.25 Mg $m^{-3}$, and organic matter content was 28.5 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.41 Mg $m^{-3}$, and organic matter content was 15.9 g $kg^{-1}$; In paddy soils, the depth of topsoil was 17.5 cm. For the topsoils, hardness was 15.3 mm, bulk density was 1.22 Mg $m^{-3}$, and organic matter content was 23.5 g $kg^{-1}$. For the subsoils, hardness was 20.3 mm, bulk density was 1.47 Mg $m^{-3}$, and organic matter content was 17.5 g $kg^{-1}$. The average of bulk density was plastic film house soils < paddy soils < orchard soils < upland soils in order, according to land use. The bulk density value of topsoils is mainly distributed in 1.0~1.25 Mg $m^{-3}$. The bulk density value of subsoils is mostly distributed in more than 1.50, 1.35~1.50, and 1.0~1.50 Mg $m^{-3}$ for upland and paddy soils, orchard soils, and plastic film house soils, respectively. Classified by soil textural family, there was lower bulk density in clayey soil, and higher bulk density in fine silty and sandy soil. Soil physical properties and distribution of topography were different classified by the types of land use and growing crops. Therefore, we need to consider the types of land use and crop for appropriate soil management.