• Title/Summary/Keyword: 뼈의 구조

Search Result 115, Processing Time 0.024 seconds

Evaluation of Bone Micro-architecture based on histomorphometry (형태학적 지수에 기반한 뼈 미세구조의 평가)

  • Park, Sang-Cheol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.862-865
    • /
    • 2005
  • 해면골에 대한 평가는 일반적으로 골밀도를 기준으로 평가하지만, 골밀도는 뼈의 특성을 70-80% 정도만 설명하는 것으로 알려져 있다. 이에 따라 골밀도로 설명이 되지 않는 나머지 특성을 뼈 미세구조의 형태학적 특성을 이용하여 설명하려는 노력이 생체역학 분야에서 오랫동안 있어 왔다. 본 연구는 CAD/CAM 분야의 feature extraction 기술을 이러한 생체역학 분야에 접목함으로써 뼈의 미세구조 평가를 위한 새로운 형태학적 지수 개발의 가능성을 탐색하고자 한다.

  • PDF

Variations of Speed of Sound and Attenuation Coefficient with Porosity and Structure in Bone Mimics (뼈 모사체에서 다공율 및 구조에 대한 음속 및 감쇠계수의 변화)

  • Kim, Seong-Il;Choi, Min-Joo;Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2010
  • In the present study, polyacetal bone mimics with circular cylindrical pores were used to investigate variations of speed of sound and attenuation coefficient with porosity and microarchitecture in bone. The speed of sound and attenuation coefficient of the 6 bone mimics with porosities from 0 % to 65.9 % were measured by a through-transmission method in water, using a pair of broadband, unfocused transducers with a diameter of 12.7 mm and a center frequency of 1.0 MHz. Independently of the structural properties of the bone mimics, the speed of sound decreased almost linearly with the increasing porosity. The attenuation coefficient measured at 1.0 MHz exhibited linear or nonlinear correlations with the porosity, depending on the structural properties of the bone mimics. These results are consistent with those previously published by other researchers using bone samples and mimics, and advances our understanding of the relationships of the ultrasonic parameters for the diagnosis of osteoporosis with the bone density and microarchitecture in human bones.

Three-dimensional microstructure analysis of small animal bone using synchrotron radiation (방사광을 이용한 작은 동물 뼈의 3차원 미세구조 분석)

  • Kim, Su-Bok;Jang, Sang-Hoon;Lee, On-Seok
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.795-796
    • /
    • 2018
  • 방사광은 기존 기계학적인 방법으로 분석했던 연구보다 더 정확한 관찰이 가능해 신뢰도가 높은 결과를 얻을 수 있다. 본 연구의 목적은 흰쥐 정강뼈의 미세구조를 3차원적으로 분석 가능한 방사광기반 경X선을 이용해 골다공증의 진단 및 평가에 필요한 정량화된 분석을 구축하고자 하였다. 흰 쥐의 정강뼈를 방사광을 통해 해부학 구조 및 미세내부구조를 얻은 뒤 3차원적 구조분석을 하였다. 그 후, 방사광으로 얻은 영상 데이터를 통해 뼈 내부 구조를 높은 해상도 이미지로 시각화하여 분석을 할 수 있었다. 따라서, 골다공증과 관련된 퇴행성 골격질환의 정량화된 분석방법을 제시하여 근거중심의 평가와 예방의 기초자료가 될 것으로 기대한다.

A Study on the Prediction of Bone Remodeling of Plated-Human Femur using Stress Analysis (응력해석에 의한 골절판이 부착된 인체 대퇴골의 골재형성 예측에 관한 연구)

  • Kim, Hyun-Su
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.111-125
    • /
    • 1995
  • The stress distribution of bone is altered by the rigid bone plate, sometimes resulting in unfavorable osteoporosis. The rigidity and the biocompatibility are important factors for the design of prosthesis, however, it is also necessary to consider the effect on the bone remodeling. In this paper, it is attempted to establish an approximate and simple method to predict the trend of the configuration of surface bone remodeling upon a bone plate using stress analysis. Thus, three dimensional finite element model of plated-human femur is generated and simulated. In addition, the stress difference method (SDM) is introduced and attempted to demonstrate the configuration of surface bone remodeling of the plated-human femur.

  • PDF

불완전 결정성 아파타이트 박막의 특성 및 응용

  • Kim, Hyeon-Man
    • Ceramist
    • /
    • v.3 no.3
    • /
    • pp.58-70
    • /
    • 2000
  • 뼈 결정과 같이 결정도가 낮은 탄산 인회석 결정의 화학조성 및 구조는 순수 수산화인회석 과 물리적 및 화학적 성질에 있어서 매우 다르다. 극미세 결정으로 결정도가 매우 낮은 불완전 결정이며, 결정 표면은 매우 반응성이 높은 이온으로 구성되어 있어 유기분자나 세포와 활발히 반응할 수 있다. 이와 같은 뼈 결정의 특성을 고형 기질 표면에 불완전 결정도 인회석 박막을 형성시켜 생체재료에 재현하였다. 이 박막에는 뼈세포들이 잘 부착하였는데 특히 골모세포의 부착, 증식, 분화를 촉진하여 장차 이와 같은 뼈 탄산 인회석의 특성을 갖는 인회석을 생체이식 재료로 이용하므로써 우리 몸의 생리에 좀 더 가까운 인공 매식체를 개발할 수 있을 것으로 기대된다.

  • PDF

The Effect of Foot Strengthening Exercise to Young of Hallux Valgus with Flexible Flatfoot (발 강화 운동이 유연성 편평발이 동반된 엄지발가락가쪽휨증을 가진 젊은 성인에게 미치는 효과)

  • Park, Jin-Hyun;Kim, Jin-Seop;Kim, Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5211-5217
    • /
    • 2012
  • This study was to evaluate the effects of foot strengthening exercise to improve hallux valgus in young of hallux valgus with flexible flatfoot. Subjects 28 people were randomly divided by the foot strength group(n=14) and control group(n=14). In a period of 8 weeks, they put on I.D.W. Experimental group took foot strengthening exercise for 20 minutes 3 times a week during 8 weeks. Foot structure and max pressure were evaluated by hallux angle, 1~2 metatarsal angle, navicular height, 1st phalange, 2~5phalange, 1st metatarsal, 2nd metatarsal, 3rd metatarsal, 4th metatarsal, 5th metatarsal, mid foot, medial hind foot, lateral hind foot. There were significantly increased by exercise group in outcomes of the structural and plantar foot pressure from hallux angle, 1~2 metatarsal angle, 1st phalange, 1st metatarsal, 2nd metatarsal, 3rd metatarsal, mid foot. The result suggest that foot strengthening exercise is feasible and suitable for individuals with hallux valgus with flexible flatfoot.

A Study on the Influence of Lumbar Lordosis and Intervertebral Disc Angle by Obesity (비만에 의한 허리뼈 전만과 추간판 각도의 영향에 관한 연구)

  • Kwak, Jong Hyeok;Choi, Min Gyeong;Kim, Neung Gyun;Kim, A Yeon;Kim, Gyeong Rip
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.235-243
    • /
    • 2020
  • Lumbar Lordosis Angle (LLA) is an index that can be used to evaluate the curvature of the lumbar vertebrae. It can measure the structural stability of the lumbar spine and the stability of each segment of the vertebral column at the intervertebral disc angle (IDA). Especially, our data shows it is found to be a strong positive correlation between obesity and the angle of lordosis for lumbar vertebrae. Also, the reason for the large IDA in the case of obesity seems to be the result of the weakening of anatomical structure as well as the gravity effect. And, the obesity interferes with normal sagittal balance and fails to maintain a straight posture with minimal energy. Therefore, the obesity can be an important factor in causing back pain by changing the lumbar lordosis.

Osteogenetic Effects of Calcium Sulfate, Demineralized Bone Matrix, and Calcium Metaphosphate in a Canine Femur with Unicortical Defects (개에서 넙다리뼈 겉질 결손부에 대한 Calcium Sulfate, Demineralized Bone Matrix, Calcium Metaphosphate의 뼈 재생 효과 비교)

  • Choi, Jang-Yoon;Park, Se-Il;Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.6
    • /
    • pp.652-662
    • /
    • 2010
  • The purpose of this experiment was to study the effects of demineralized bone matrix (DBM), calcium sulfate (CS), and calcium metaphosphate (CMP) on osteogenesis of unicortical 5-mm-diameter defects in canine femurs. Seventy-two femoral unicortical defects of nine adult beagles (eighteen femurs, four unicortical femoral defects were made in each femur) were made. Three bone graft substitutive materials such as CS, DBM, and CMP and the empty controls were compared each other. The postimplanted specimens were harvested at week 4, 8, and 24 for radiographic, biochemical and histomorphologic evaluation. In radiograph, CS group appeared to be absorbed rapidly and made new cortical bone. Defects of cortical bone was gradually filled with new bone around bone graft materials in DBM group. Bone graft substitutes weren't absorbed rapidly but, remained performing structural roles in cortical bone after 24 weeks in CMP group. Radiographic intensity of control group showed significantly (p < 0.05) lower compared to that of experimental group. Defects treated with either CS, DBM or CMP had more bone formation than the untreated defects (p < 0.05). The results of analysis in the cortical bone region were deduced the conclusions as follows. Three bone graft materials seemed to accelerate the formation of new bone compared with controls for 24 weeks. CMP group having more or less large particle space was more adequate than DBM group, as well as more compact CS group was more pertinent than CMP group as the glues for bones.

Automatic Segmentation of Trabecular Bone Based on Sphere Fitting for Micro-CT Bone Analysis (마이크로-CT 뼈 영상 분석을 위한 구 정합 기반 해면뼈의 자동 분할)

  • Kang, Sun Kyung;Kim, Young Un;Jung, Sung Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.329-334
    • /
    • 2014
  • In this study, a new method that automatically segments trabecular bone for its morphological analysis using micro-computed tomography imaging was proposed. In the proposed method, the bone region was extracted using a threshold value, and the outer boundary of the bone was detected. The sphere of maximum size with the corresponding voxel as the center was obtained by applying the sphere-fitting method to each voxel of the bone region. If this sphere includes the outer boundary of the bone, the voxels included in the sphere are classified as cortical bone; otherwise, they are classified as trabecular bone. The proposed method was applied to images of the distal femurs of 15 mice, and comparative experiments, with results manually divided by a person, were performed. Four morphological parameters-BV/TV, Tb.Th, Tb.Sp, and Tb.N-for the segmented trabecular bone were measured. The results were compared by regression analysis and the Bland-Altman method; BV/TV, Tb.Th, Tb.Sp, and Tb.N were all in the credible range. In addition, not only can the sphere-fitting method be simply implemented, but trabecular bone can also be divided precisely by using the three-dimensional information.