• Title/Summary/Keyword: 뼈대

Search Result 274, Processing Time 0.022 seconds

A Study on the Gesture Matching Method for the Development of Gesture Contents (체감형 콘텐츠 개발을 위한 연속동작 매칭 방법에 관한 연구)

  • Lee, HyoungGu
    • Journal of Korea Game Society
    • /
    • v.13 no.6
    • /
    • pp.75-84
    • /
    • 2013
  • The recording and matching method of pose and gesture based on PC-window platform is introduced in this paper. The method uses the gesture detection camera, Xtion which is for the Windows PC. To develop the method, the API is first developed which processes and compares the depth data, RGB image data, and skeleton data obtained using the camera. The pose matching method which selectively compares only valid joints is developed. For the gesture matching, the recognition method which can differentiate the wrong pose between poses is developed. The tool which records and tests the sample data to extract the specified pose and gesture is developed. 6 different pose and gesture were captured and tested. Pose was recognized 100% and gesture was recognized 99%, so the proposed method was validated.

Free Vibration Analysis of a 3-dimensional Cable-Stayed Bridge with the Unsymmetric Girder Cross-section (비대칭단면 주형을 갖는 3차원 사장교의 고유진동해석)

  • Kim, Chul Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.15-26
    • /
    • 1991
  • The lateral forces such as the earthquake and wind my cause the torsion to be coupled with the lateral bending in the gider, the cross-section of wich has only one axis of symmetry. This induces additional stresses especially in cables arranged in double-planes. Since this effect cannot be considered by using the conventional frame elements, the stiffness and the mass matrices of the geometrically nonlinear thin-walled frame element are developed in this study to model the girder. The equivalent modulus of elasticity proposed by Ernst is used for the cable elements. Verification of the present theory is made through a numerical example. Then, the free vibration of a three dimensional cable-stayed bridge is analyzed to study the coupled flexural-torsional behavior.

  • PDF

A Finite Element Nonlinear Formulation for Large Deformations of Plane Frames (평면 뼈대구조물의 큰 변형에 대한 비선형 유한요소의 정식화)

  • 윤영묵;박문호
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.69-83
    • /
    • 1994
  • An explicit finite element nonlinear formulation for very large deformations of plane frame structures is developed. The formulation is based on an updated material reference frame and hence a true stress-strain relationship can be directly applied to characterize the properties of material which is subjected to very large deformations. In the formulation, a co-rotational approach is applied to deal with the large rotations but small strain problems. Straight beam element is considered when the strain of an element is large. The element formulation is based on the small deflection beam theory but with the inclusion of the effect of axial force. The element equations are constructed in an element local coordinate system which rotates and translates with the element, and then transformed to the global coordinate system. Several numerical examples are analyzed to validate the presented formulation.

  • PDF

Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure (트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.347-352
    • /
    • 2012
  • This paper presents a robotic foot mechanism based on truss structure for walking robots and analyzes its effectiveness for compliant walking. The specified foot mechanism has been modeled by observing the structure and behavior of human foot. The frame of bone used in the human foot is considered as a truss, and the ligaments of the human foot are represented as a simple stiffness element. So such a robotic foot has an advantage to moderate the impact of foot when a walking robot takes a step. As a result, it is practically expected that the proposed robotic foot mechanism can contribute to reduce the physical fatigue of walking robots.

Single Degree of Freedom Hybrid Dynamic Test with Steel Frame Structure (강 뼈대 구조물의 단자유도 하이브리드 동적 실험)

  • Kim, Se-Hoon;Na, Ok-Pin;Kim, Sung-Il;Lee, Jae-Jin;Kang, Dae-Hung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2012
  • The purpose of this study is to evaluate the structural dynamic behavior under hybrid control system. The hybrid test is to consider the interaction between the numerical and physical models. In this paper, single degree of freedom hybrid test was performed with one-bay, two-story steel frame structure. One column at the first floor was selected as a physical substructure and one actuator was used for applying the displacement load in horizontal direction. El Centro as earthquake waves was inputted and OpenSees was employed as the numerical analysis program for the hybrid real-time simulation. As a result, the total time of the hybrid test was about 9.6% of actual measured seismic period. The experimental results agreed well with the numerical one in terms of the maximum displacement. In nonlinear analysis, however, material nonlinearity made a difference of residual strain. Therefore, this hybrid dynamic test can be used to predict the structural dynamic performance more effectively than shaking table test, because of the spatial and economic limitations.

Computational Approach for the Trade-Off Study between the Total Cost and the Member Connections in Steel Frames (강 뼈대구조물의 총 경비와 부재연결과의 상반관계에 관한 연구)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Over the past decade, labor costs have increased relative to the cost of material hardware according to analysts in the construction industry. Therefore, the minimum weight design, which has been widely adopted in the literature for the optimal design of steel structures, is no longer the most economical construction approach. Presently, although connection- related costs is crucial in determining the most cost-effective steel structures, most studies on this subject focused on minimum-weight design or engaged in higher analysis. Therefore, in this study, we proposed a fabrication scheme for the most cost-effective moment-resisting steel frame structures that resist lateral loads without compromising overall stability. The proposed approach considers the cost of steel products, fabrication, and connections within the design process. The optimal design considered construction realities, with the optimal trade-off between the number of moment connections and total cost was achieved by reducing the number of moment connections and rearranging them using the combination of analysis that includes shear, displacement and interaction value based on the LRFD code and optimization scheme based on genetic algorithms. In this study, we have shown the applicability and efficiency in the examples that considered actual loading conditions.

A Study on the Nonlinear Analysis of R/C Frames Structures subjected to Static Loads (철근콘크리트뼈대 구조물의 정적 비선형 해석에 관한 연구)

  • 심종성;조민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.196-201
    • /
    • 1992
  • The purpose of this study is to develop the computer software for the nonlinear analysis of R/C frame structure under static loads. For this purpose, strain-rate dependant material model and physical element model considering both flexural and shear deformation are adopted and they are connected with 'TWO-D'which is commerical software for elastic structural analysis. The analytical results using the developed software are compared to the experiment results and they are generally satisfactory.

  • PDF

Effect of Repeated Fatigue Frequency on The Fine Structure and Properties of PET fiber (반복인장주기가 PET 섬유의 미세구조와 물성에 미치는 영향)

  • 이용관;이기환;조현혹
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.367-370
    • /
    • 2002
  • PET, 나일론 등과 같이 타이어코드용으로 사용되는 섬유는 타이어 내에서 계속적인 신장, 굽힘 및 압축변형을 받기 때문에 이들로 인하여 내피로성이 아주 중요한 의미를 가진다. 일반적으로 타이어는 Tread, Bead, Carcass, Sidewall, Belt 등으로 구성되어 있는데, 여기에서 타이어 코드용 섬유는 타이어의 뼈대를 이루는 것으로 타이어의 성능과 수명을 좌우하는 아주 중요한 소재인 것이다[1-2]. (중략)

  • PDF

46억년 지구역사의 산 증인

  • Jang, Sun-Geun
    • The Science & Technology
    • /
    • no.9 s.412
    • /
    • pp.86-91
    • /
    • 2003
  • 화석이란 지질 시대에 살았던 생물, 곧 고생물의 유체나 흔적이나 배설물들이 지층에서 바위나 돌멩이처럼 굳어져 있는 것을 말한다. 또 지질시대란, 46억 년의 역사를 가진 지구역사에서 최초의 바위가 만들어지기 시작했던 때부터 역사시대 이전까지를 말한다. 그러므로 화석의 나이는 최소한 5천~6천년은 더 되므로, 80년 정도를 사는 인간의 처지에서보면 상상이 되지 않는 때에 살았던 생물들이 껍데기나 뼈대나 알 그리고 배설물들이다. 그러나 이집트 미이라는 역사시대의 유물이므로 사람의 화석이라도 말하지 않는다.

  • PDF

Improving Surface Conductivity of Nonconductive Materials (불량도체 표면의 전도성 부여가공)

  • 박병기
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.75-85
    • /
    • 1999
  • 불량도체 표면의 대전현상 즉 정전기(static electricity) 현상은 인류의 일상생활에 도움을 주기도 하고 피해를 주기도 하지만 주로 해로움이 많다. 따라서 뼈대의 물리적 기능이 탁월한 불량도체의 표면에 전도성을 부여해 주면 생활에 편리함을 줄 수 있을 뿐만 아니라 유익한 여러 가지 첨단기술 제품도 생산해 낼 수 있다. 유리, 종이, 섬유, 플라스틱과 같이 원래 전기가 잘 통하지 않는 불량도체의 표면에 전도성을 부여하려는 가공법이 다양하게 시도되고 있다. 절연체에 전도성을 부여하는 기술은 복합(composite)화에 의한 전자기능의 출현을 목표로 한 기술인데 다음 2가지 형태로 분류할 수 있다.(중략)

  • PDF