• Title/Summary/Keyword: 빔 커버리지

Search Result 20, Processing Time 0.028 seconds

Validation of COMS Ka band Antenna Beam Coverage (천리안위성 Ka대역 안테나 빔 커버리지 검증)

  • Jo, Jin-Ho;You, Moon-Hee;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • This paper described validation results of COMS Ka band antennas beam coverages which were developed by ETRI. After satellite launch, In Orbit Test(IOT) activities are stat to check spacecraft and payloads are still in healthy condition after launch. During IOT phase, ETRI measured radiation patterns of COMS Ka band antennas and compare with ground test(CATR) results. The antenna patterns similarity between IOT results and CATR results show that COMS Ka band antenna withstand launch vibration and in the good healthy condition. After IOT, ETRI performed field test for beam coverage measurements with vehicle to check if Ka band beam coverage are formed well as designed. For the beam coverage measurement, 17 points were selected over the Korean peninsula. The field measurement data were very similar with CATR data and this confirms that beam coverage are formed well over the Korean peninsula as expected.

Small ESPAR Antenna with 180 Degree Azimuth Beam Coverage (180도 방위 빔 커버리지 특성을 갖는 UNII대역 소형 전자 빔 조향 기생 배열 안테나)

  • Choi, Ik-Guen;Ju, Sang-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2010
  • In this papar, we have proposed a small electronically steerable parasitic array radiator with 180 degree azimuth beam coverage and high gain characteristics. The proposed antenna is composed of a uniplanar Yagi dipole as a feeding element and two dipoles as parasitic elements. The fabricated antenna is tested by electronically changing the reactance loaded on the parasitic dipoles and the results show that it has 5.2dB~6.7dB gain in $-90^{\circ}{\sim}90^{\circ}$wide azimuth range and -10dB return loss characteristics within 5.725GHz~5.825GHz UNII band.

Coverage Evaluation of mmWave Small Cell in Outdoor Environment (실외환경에서 밀리미터파 소형 셀의 커버리지 측정)

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.162-165
    • /
    • 2017
  • In an effort to compensate the rising of the data throughput demand nowadays, there have been many research works to optimize the radio resource and increase the capacity of the network. At the present, small cell network, mmWave band and beamforming technology are leading the trend and becoming the core solutions of the fifth generation (5G) cellular networks. Since the propagation characteristics of radio wave in the mmWave band is quite different from the conventional bands, the communication systems which work in these bands have to be redesigned. In this paper, a 3D simulation model is discussed for cellular network at 60 GHz in outdoor environments. Coverage analysis and system performance is carried out for a small cell system in the typical urban environment including street canyon simulation scenario. In addition, the beamforming technique is considered to evaluate the throughput improvement. Simulation results show that the mmWave small cell systems is expected to be one of the major candidate technologies to satisfy the requirements of 5G in terms of data rate.

An Effective Coverage Extension Scheme for Trisector Cellular Systems using Multi-hop Relay based on IEEE 802.16j (IEEE 802.16j 기반의 중계기를 도입한 3섹터 셀룰러 시스템에서 효율적인 기지국 커버리지 확장 기법)

  • Yoo, Chang-Jin;Kim, Seung-Yeon;Cho, Choong-Ho;Lee, Hyong-Woo;Ryu, Seung-Wan
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • In this paper, We analysis of effective coverage extension for Tri-sector cellular systems using Multi-hop Relay based on IEEE802.16j system. In the proposed international standard of IEEE 802.16j MMR (Mobile Multi-hop Relay) use of the omni-directional antenna, 3-sector and 6-sector antenna is considered to Base Station and Relay Station. Omni-directional antenna service can offer as all directions but a throughput decreases due to the signal interference of near Relay Stations. In the directional antenna, cause of an interference with the base station which it arranges an antenna so that a beam can have the direct and does with neighbor Base Station and Relay Station can be reduced interference, therefore the effective throughput is higher than the omni-directional antenna system. But, In case of Base Station and Relay Station use the directional antenna, the efficiency which the directional antenna has the Co-channel interference due to in the different cell by the channel reuse is decreased. In this study, we propose the structure of arranging the Base Station and Relay Station having the directional antenna in the NBTC, WBTC antenna in a multi-tier. It compared and analyzed with the mode that the multi-hop Relay Station has the omni-directional antenna, Relay Station are used the NBTC antenna and the WBTC antenna system also, We analyze a relation between the performance degradation and the cell coverage extension which it follows because the number of hop in the multi-hop Relay Station.

A Study of Beam Tilted Antenna by Aperture Coupled Microstrip Array (개구 급전 마이크로스트립 배열에 의한 빔 틸팅 안테나에 관한 연구)

  • 고진현;하재권;박덕규
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.151-155
    • /
    • 1999
  • We proposed the beam tilted antenna by aperture coupled microstrip array, found out the values of design parameters by using Ensemble 5.1 of Ansoft Co., and analysed the performance of fabricated antenna. In order to point to the fixed satellite on the nothern hemisphere, 3 dB beamwidth of this antenna is 25$^{\circ}C$ to 65$^{\circ}C$. Operation bandwidth is 2.51GHz to 2.59GHz. The structure of this antenna is composed by 3 types of squared patches; reflector, driver, and director. The maximum antenna gain is 6.2dB at 2.56GHz and elevation angle of 42$^{\circ}C$. Front-to-Back ratio is more than 13dB at the same condition.

  • PDF

Beam Steering Antenna Using a Dipole and a Loop (다이폴 루프 결합형 빔 조향 안테나)

  • Ha, Sang-Jun;Kim, Yong-jin; Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.880-885
    • /
    • 2010
  • In this paper, we propose a reconfigurable beam steering antenna using a dipole and a loop. The radiation patterns of the two antennas were cancelled or compensated, and head for the specific direction when a dipole and a loop antenna are combined at the reasonable ratio. The structure of the antenna is very simple and planar. By changing on/ off states of switches, the proposed antenna can steer the beam direction in the x-y plane. Simulation results confirmed the steering characteristic by using two imaginary switches. The proposed antenna can change the direction of the maximum gain in the x-y plane($0^{\circ}$, ${\pm}50^{\circ}$). The proposed antenna operates in 2.5~2.56 GHz(VSWR<2). It showed that peak gain of the antenna is 1.96~2.48 dBi and overall beam width of the reconfigurable antenna covers about $125^{\circ}$.

Beam Steering Antenna Using Microstrip Patch with U-Slot for Wearable Fabric Applications (의복용 U-슬롯을 갖는 빔 조향 마이크로스트립 안테나)

  • Ha, Sang-Jun;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.754-760
    • /
    • 2011
  • Reconfigurable beam steering using microstrippatch antenna with U-slot is proposed for wearable fabric applications. The proposed antenna is manufactured on a fabric substrate, and designed to steer the beam directions at the operation frequency of 6.0 GHz. The U-shaped slot and the indirect feeding-techniques are utilized in designing the proposed antenna. By the configuration of two artificial switches($S_0$, $S_1$, $S_2$) in between the indirect feed and the antenna patch, the antenna has three beam directions. The maximum beam directions are steerable in the yz-plane(${\theta}=0^{\circ}$, $30^{\circ}$, $331^{\circ}$), and the overall HPBW is $115^{\circ}$. The measured peak gains are 6.11~6.69 dBi.

The Design of a Broadband E-plane H Sectoral Horn Phased Array Antenna Using Mutual Coupling (상호 결합을 이용한 광대역 E-면 H 섹터 혼 위상 배열 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.620-628
    • /
    • 2007
  • An H-sector horn antenna has a constant beam coverage characteristic and it can be useful for application to a wide band phased array antenna system. In this paper, we designed a broadband E-plane H-sector horn phased-array antenna, which has a 3:1 bandwidth and ${\pm}60^{\circ}$ beam steering capability. An H-sector hem antenna was designed to have $30{\sim}50^{\circ}$ half-power beam width in the principal H-plane. The active reflection coefficient including mutual coupling was calculated using a waveguide simulator, and the active reflection characteristic was improved by mutual coupling over wide frequency range. Using these results, an $8{\times}1$ H-sector phased array antenna was fabricated. The measurement results for the half-power beam width in the principal H-plane and the active reflection coefficient showed a good agreement with the simulation results. The peak-value pattern in the steered radiation beams also agreed well with the active element pattern. The measured active reflection coefficients within the beam steering range are mostly less than 0.3 over the 3:1 frequency range.

Beam Tracking Technique for Communication with Multiple Unmanned Aircraft Vehicles(UAVs) (다중 무인 항공기 통신을 위한 빔 추적 기법)

  • Maeng, Sung Joon;Park, Haein;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1539-1548
    • /
    • 2016
  • Beamforming technique at the ground station is known to be effective in obtaining coverage extension or SNR gain for communication with unmanned aerial vehicle (UAV). When a UAV moves, periodic beam tracking is necessary to maintain beam gain. In order to track beams for multiple UAVs, the ground station needs to receive different preamble sequences from multiple UAVs. In this paper, a preamble sequence design technique is proposed for beam tracking in a GMSK-based communication system with multiple UAVs. Hadamard sequence is considered for the design of preamble sequence due to its ideal cross-correlation property. A preamble sequence appropriate for a GMSK communication system with multiple UAVs is proposed after analyzing the properties of received signal in a GMSK system with the input of Hadamard sequence.

해양통신에서 uplink coverage 확장을 위한 relay 송수신 기법연구

  • 이경제;김동구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.77-78
    • /
    • 2022
  • Currently, communication at sea is more difficult than communication at inland due to the movement of route signs by waves. This paper conducts research on relay transmission and reception techniques to extend coverage in uplink situations. The uplink maritime communication environment between inland base stations and buoys located a certain distance inland was viewed as two hops, and a beam generated according to the number of antennas was selected and a performance analysis was conducted considering the movement of buoys measured by sensors.

  • PDF