• Title/Summary/Keyword: 빔 영상시스템

Search Result 133, Processing Time 0.023 seconds

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.

Effect of Low Magnetic Field on Dose Distribution in the Partial-Breast Irradiation (부분유방 방사선조사 시 저자기장이 선량분포에 미치는 영향)

  • Kim, Jung-in;Park, So-Yeon;Lee, Yang Hoon;Shin, Kyung Hwan;Wu, Hong-Gyun;Park, Jong Min
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.208-214
    • /
    • 2015
  • The aim of this study is to investigate the effect of low magnetic field on dose distribution in the partial-breast irradiation (PBI). Eleven patients with an invasive early-stage breast carcinoma were treated prospectively with PBI using 38.5 Gy delivered in 10 fractions using the $ViewRay^{(R)}$ system. For each of the treatment plans, dose distribution was calculated with magnetic field and without magnetic field, and the difference between dose and volume for each organ were evaluated. For planning target volume (PTV), the analysis included the point minimum ($D_{min}$), maximum, mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$) and 107% ($V_{107%}$) of the prescribed dose, respectively. For organs at risk (OARs), the ipsilateral lung was analyzed with $D_{mean}$ and the volume receiving 20 Gy ($V_{20\;Gy}$), and the contralateral lung was analyzed with only $D_{mean}$. The heart was analyzed with $D_{mean}$, $D_{max}$, and $V_{20\;Gy}$, and both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$ and $D_{mean}$, respectively. For PTV, the effect of low magnetic field on dose distribution showed a difference of up to 2% for volume change and 4 Gy for dose. In OARs analysis, the significant effect of the magnetic field was not observed. Despite small deviation values, the average difference of mean dose values showed significant difference (p<0.001), but there was no difference of point minimum dose values in both sehll structures. The largest deviation for the average difference of $D_{max}$ in the outer shell structure was $5.0{\pm}10.5Gy$ (p=0.148). The effect of low magnetic field of 0.35 T on dose deposition by a Co-60 beam was not significantly observed within the body for PBI IMRT plans. The dose deposition was only appreciable outside the body, where a dose build-up due to contaminated electrons generated in the treatment head and scattered electrons formed near the body surface.

Dosimetric effects of couch attenuation and air gaps on prone breast radiation therapy (Prone Breast Phantom을 이용한 couch 산란영향 평가)

  • Kim, Min Seok;Jeon, Soo Dong;Bae, Sun Myeong;Baek, Geum Mun;Song, Heung Gwon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate the dosimetric effects of couch attenuation and air gaps using 3D phantom for prone breast radiation therapy. Materials and method: A 3D printer(Builder Extreme 1000) and computed tomography (CT) images of a breast cancer patient were used to manufacture the customized breast phantom. Eclipse External Beam Planning 13.6 (Varian Medical Systems Palo Alto, CA, USA) was used to create the treatment plan with a dose of 200 cGy per fraction with 6 MV energy. The Optically Stimulated Luminescence Detector(OSLD) was used to measure the skin dose at four points (Med 1, Med 2, Lat 1, Lat 2) on the 3D phantom and ion-chamber (FC65-G) were used to perform the in-vivo dosimetry at the two points (Anterior, Posterior). The Skin dose and in-vivo dosimetry were measured with reference air gap (3 cm) and increased air gaps (1, 2, 3, 4, 5, 6 cm) from reference distance between the couch and 3D phantom. Results: As a result, measurement for the skin dose at lateral point showed a similar value within ${\pm}4%$ compared to the plan. While the air gap increased, skin dose at medial 1 was reduced. And it was also reduced over 7 % when the air gap was more than 3 cm compared to radiation therapy plan. At medial 2 it was reduced over 4 % as well. The changes of dose from variety of the air gap showed similar value within ${\pm}1%$ at posterior. As the air gap was increased, the dose at anterior was also increased and it was increased by 1 % from the air gap distance more than 3 cm. Conclusion: Dosimetrical measurement using 3D phantom is very useful to evaluate the dosimetric effects of couch attenuation and air gaps for prone breast radiation therapy. And it is possible to reduce the skin dose and increase the accuracy of the radiation dose delivery by appling the optimized air gap.

  • PDF