• Title/Summary/Keyword: 빔

Search Result 4,629, Processing Time 0.033 seconds

Design of a TL Personal Dosimeter Identifiable PA Exposure and Development of Its Dose Evaluation Algorithm (후방피폭선량계측이 가능한 TL 개인선량계의 설계 및 선량평가 알고리즘 개발)

  • Kwon, J.W.;Kim, H.K.;Yang, J.S.;Kim, J.L.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • A single-dosimeter worn on the anterior surface of body of a worker was found to provide significant underestimation of dose to the worker when radiation comes from behind of the human body. Recently, several researchers suggested that this kind of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. But this multiple dosimetry also has the disadvantages like overestimation lowering work efficiency or cost burden. In this study, a single dosimeter introducing asymmetric filters enabled to identify PA exposure was designed by monte-carlo simulation and experiments and its dose evaluation algorithm for AP-PA mixed radiation field was established. This algorithm was applicable to penetrating radiation which had the effective energy more than 100 keV. Besides, the dosimeter and algorithm in this study were possible to be applied to near PA exposure.

Growth and Production of Pseudoblennius cottoides in an Eelgrass (Zostera marina) Bed of Dongdae Bay, Korea (동대만 잘피밭에 서식하는 가시망둑(Pseudoblennius cottoides)의 성장과 생산량)

  • Kim, Ha-Won;Huh, Sung-Hoi;Kwak, Seok-Nam;Lee, In-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.461-467
    • /
    • 2014
  • The growth and production of Pseudoblennius cottoides (1.80~10.01 cm TL) were investigated in an eelgrass bed of Dongdae Bay, Korea throughout 2006. A total 702 P. cottoides were collected with a small beam trawl. Growth in fish total length was expressed as: $TL=0.0539d^{0.9105}$. The relationships between total length body weight was estimated as $W=0.0079TL^3.1103$. The densities, biomass, daily, annual production, and P/B ratio were $0.06{\pm}0.062/m^2$, $0.10{\pm}0.144g/m^2$, $0.0005{\pm}0.0006g\;AFDW/m^2/day$, $0.1833g\;AFDW/m^2/year$, and 1.813, respectively. Monthly production of P. cottoides were greatly peak in May, July and September (0.0029, 0.0031 and $0.0019g\;AFDW/m^2/day$) when the biomass was high, and the lowest value in December (0.00004g AFDW/m^2/day) when the biomass was low. Monthly change in production of P. cottoides was positively correlated with biomass and temperature.

Preparation and Stability of Silyl Adlayers on 2×1-Reconstructed and Modified Si(100) Surfaces (Si(100)-2×1 표면과 개질된 Si(100) 표면 상에서 실릴 (Silyl) 흡착충의 형성과 안정성)

  • Jo, Sam-K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Saturation-coverage silyl, $-SiH_3(a)$, overlayers were prepared from $Si_2H_6$ adsorption on three comparative surfaces: clean unmodified; D-precovered; and atomically roughened Si(100). Together with its precursor-mediated adsorption behavior, the surface reactivity of $Si_2H_6$ was found to be the highest on the unmodified Si(100)-$2{\times}1$ surface. This was correlated with its dissociative adsorption mechanism, in which both the $H_3Si-SiH_3$ bond scission and the dual surface $Si-SiH_3(a)$ bond formation require a surface dangling bond 'pair'. The unusually high thermal stability of $-SiH_3(a)$ on the unmodified surface was ascribed to a nearly close-packed $-SiH_3(a)$ coverage of ${\sim}0.9$ monolayer and the consequent lack of dangling bonds on the silyl-packed surface.

Simulation of Energy Resolution of Time of Flight System for Measuring Positron-annihilation induced Auger Electrons (양전자 소멸 Auger 전자 에너지 측정을 위한 Time of Flight의 분해도 향상에 관한 이론적 연구)

  • Kim, J.H.;Yang, T.K.;Lee, C.Y.;Lee, B.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • Since the presence of the chemical impurities and defect at surfaces and interfaces greatly influence the properties of various semiconductor devices, an unambiguous chemical characterization of the metal and semiconductor surfaces become more important in the view of the miniaturization of the devices toward nano scale. Among the various conventional surface characterization tools, Electron-induced Auger Electron Spectroscopy (EAES), X-ray Photoelectron Spectroscopy (XPS) and Secondary Electron Ion Mass Spectroscopy (SIMS) are being used for the identification of the surface chemical impurities. Recently, a novel surface characterizaion technique, Positron-annihilation induced Auger Electron Spectroscopy (PAES) is introduced to provide a unique method for the analysis of the elemental composition of the top-most atomic layer. In PAES, monoenergetic positron of a few eV are implanted to the surface under study and these positrons become thermalized near the surface. A fraction of the thermalized positron trapped at the surface state annihilate with the neighboring core-level electrons, creating core-hole excitations, which initiate the Auger process with the emission of Auger electrons almost simultaneously with the emission of annihilating gamma-rays. The energy of electrons is generally determined by employing ExB energy selector, which shows a poor resolution of $6{\sim}10eV$. In this paper, time-of-flight system is employed to measure the electrons energy with an enhanced energy resolution. The experimental result is compared with simulation results in the case of both linear (with retarding tube) and reflected TOF systems.

New Analysis Approach to the Characteristics of Excimer Laser Annealed Polycrystalline Si Thin Film by use of the Angle wrapping (엑시며 레이저에 의해 형성된 다결정 실리콘 박막의 Angle wrapping에 의한 깊이에 따른 특성변화)

  • Lee, Chang-U;Go, Seok-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.884-889
    • /
    • 1998
  • Amorphous silicon films of large area have been crystallized by a line shape excimer laser beam of one dimensional scanning with a gaussian profile in the scanning direction. In order to characterize the crystalline phase transition of thickness variables in excimer laser annealing(ELA), angle wrapping method was used. And also to characterize the residual stresses of crystalline phase transition in the case of angle wrapped-crystalline silicon on corning 7059 glass, polarized raman spectroscopies were measured at various laser energy density and substrate temperature. The residual stress varies from $9.0{\times}10^9$ to $9.9{\times}10^9$, and from $9.9{\times}10^9$ to $1.2{\times}10^10$dyne/${cm}^2$ of the substrate temperature at room temperature and varies from $8.1{\times}10^9$ to $9.0{\times}10^9$, and from $9.0{\times}10^9$ to $9.9{\times}10^9$dyne/${cm}^2$ of the substrate temperature at $400^{\circ}C$ as a function of direction from surface to substrate. According to the direction from the surface in liquid phase to the interface and from the interface to near the substrate in solid phase of recrystallized Si thin film, respectively. Thus, the stress is increased from(Liquid phase to solid phase) with phase transition.

  • PDF

Seafloor Morphology and Surface Sediment Distribution of the Southwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 남서부 해저지형 및 표층퇴적물 분포)

  • Koo, Bon-Young;Kim, Seong-Pil;Lee, Gwang-Soo;Chung, Gong Soo
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • Multi-beam echosounder data and grain size analysis data of surface sediment were acquired and analyzed in order to investigate the shelf-to-slope morphology, geological character, and their geological controlling factors in the southwestern margin of the Ulleung Basin. According to the morphological character, the continental shelf can be divided into two parts: (1) shallow (~100 m) and steep ($0.5^{\circ}$) inner shelf, (2) deep (100-300 m) and gentle ($0.2^{\circ}$) outer shelf. The continental slope is featured with eight distinct topographic depressions of various spatial dimension (~121 $km^2$ in area) and head wall gradient (${\sim}24.3^{\circ}$). They are developed adjacent to each other and presumably formed by submarine landslides which have recurred under the strong influences of earthquakes and eustatic sea-level change. The inner continental shelf and the continental slope are dominated by fine-grained sediment, whereas the outer continental shelf is dominated by coarse-grained sediment. The surface sediment distribution seems dominantly influenced by eustatic sea-level change. The outer continental shelf is mostly covered by coarse relict sediment deposited during lowstand sea-level, while the inner shelf is covered with recent sediment during highstand sea-level. The surface of the continental slope is covered with fine-grained sediments which were supplied by hemipelagic advection process.

Design of a Double-Faced Monopole Antenna Using the Coupling Effect of Induced Currents (유도 전류의 커플링 효과를 이용한 모노폴 안테나 설계)

  • Choi, Young;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1327-1336
    • /
    • 2012
  • In this paper, the dual-faced monopole antenna, which is arranged by numerous rectangular ring patches in sequence for the multi-bands is proposed. The ring type structure of the patch can be increased the bandwidth. Therefore the bandwidth and beam width are improved by using multiple arrayed patches. When the ring type patches are inserted serially, the resonance frequencies are occurred by the current flow from the first ring patch. It is possible because the gap between the patches is very narrow. In addition, if the patches are composed on the same plane as the feed-line, fabrication could be very difficult because the gap between the patches is extremely narrow. The thickness and permittivity of the antenna, moreover, are very important parameters because both sides of the substrate are used. We finally found the optimal thickness and permittivity to generate the coupling effect by simulation. All patches are consisted of 4-steps which the patch size was decreased 85 % by each step. In conclusion, the resonant frequency bands are 1.75~2.6 GHz(850 MHz), 3.24~3.46 GHz(220 MHz), 3.8~4.0 GHz(200 MHz), and 4.4~4.9 GHz(500 MHz).

Properties of ZnO nanostructures by metal deposited on Si substrates (Metal 증착한 Si 기판 상의 ZnO 나노 구조 특성)

  • Jang, Hyeon-Gyeong;Jung, Mi-Na;Park, Seung-Hwan;Shin, Dae-Hyeon;Yang, Min;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1034-1037
    • /
    • 2005
  • The variation of shapes and related properties of ZnO nanostructures grown on the metal pattern and Si substrate have been investigated. Ni, Cr metal patterns were formed on Si (111) substrates by e-beam evaporation, and ZnO nanostructures were fabricated on it by using thermal evaporation of Zn powder in air. Growth temperature was controlled from 500 $^{\circ}$C to 700 $^{\circ}$C. When the growth temperature was relatively low, no considerable effect was found. However, UV emission intensity decreased, and Green-emission intensity, which is regarded as originated from the defect state in the ZnO nanostructure, increased as growth temperature increase. Also, the variation of nanostructure shape at high temperature (700 $^{\circ}$C) is understood in terms of the enhanced incorporation of metal vapor during the nanostructure formation.

  • PDF

Performance Analysis of an Adaptive Sector System for Terrestrial Station in Ad-hoc Communication System Between Vessels (선박 간 ad-hoc 통신 시스템에서 육상국용 적응 섹터 시스템의 성능 분석)

  • Lee, Hyung-beom;Kim, Seung-geun;Kim, Jun-ho;Kim, Min-sang;Ko, Hak-lim;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.263-268
    • /
    • 2016
  • A rapid increase of data amount, used in ship-to-ship transmission of safety and logistics information, ships in the inland sea have trouble transmitting real-time information transmission due to an increase in traffic load caused by data transmitted by land station and offshore ships. In this study, therefore, communication is carried out by adaptively controlling the detailed beam width based on the distribution of offshore ships in land station durable in marine environment. Then after the adaptive sector system enabling real-time communication support between ships concentrated in an inland sea and land station is applied, the performance verification is conducted based on the respective Call Blocking Rates of an omnidirectional antenna, fisted sector system, and adaptive sector system. The performance verification result shows that adaptive sector system has better performance than the fixed sector system as the density of ship, q value, increases, and that the smaller the beam width is, the better performance of adaptive sector system will be.

Thermal Shock Resistance According to the Manufacturing Process of Lanthanum Gadolinium Zirconate Ceramic Igot for Thermal Barrier Coating by Electron Beam in the La2O3-Gd2O3-ZrO2 System (전자빔 증착 열차폐 코팅용 란타늄-가돌리늄 지르코네이트(La2O3-Gd2O3-ZrO2계) 세라믹 잉곳의 제조공정에 따른 열충격 저항성)

  • Choi, Seona;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Han, Yoonsoo;Kim, Hyungtae;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.465-472
    • /
    • 2017
  • The ingot fabrication conditions related with the thermal shock bearing phase and microstructure have investigated for the rare earth zirconate ceramic material, lanthanum gadolinium zirconate, as a thermal barrier coating using electron beam evaporation method. The thermal shock resistance of the prepared ingot was evaluated by high energy electron beam irradiation. The rare earth zirconate ceramic powder was prepared by controlling the raw material powder composition of $La_2O_3$, $Gd_2O_3$ and $ZrO_2$ so as to have a composition of $(La_{0.3}Gd_{0.7})_2Zr_2O_7$ which was selected from the former study. Ingot samples were prepared under two conditions. The first condition is prepared by sintering the prepared powder mixture to form an ingot. The second condition is prepared by calcining the prepared powder mixture to form a composite phase and then sintering to form an ingot. X-ray diffraction(XRD) and Scanning Electron Microscope(SEM) were used to analyze phase forming behavior and microstructure of ingot samples. Nanoindentation method used to obtain elastic modulus and hardness of each ingot specimen. Also the stress distribution of ingot was simulated by using FEM method assuming the ingot surface was exposed to electron beam. As a results, in the case of an ingot having a network-shaped microstructure in which relatively coarse pores are included, it seems that the thermal shock resistance was higher than in the case of an ingot having a microstructure composed of relatively fine grains only or particles with the similar level size when the high energy electron beam irradiation.