• 제목/요약/키워드: 빌딩블럭법

검색결과 4건 처리시간 0.016초

부분구조합성법을 이용한 판의 모우드해석 (Modal Analysis of Plate by Substructure Synthesis Method)

  • 정재훈;지태한;박영필
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.65-74
    • /
    • 1994
  • Various substructure synthesis methods, such as component mode synthesis, building block analysis and reduced impedance method, are studied for the determination of vibration characteristics of plate problems. Comparisons are made for each methods in terms of accuracy and computational efficiency. Following conclusions are made from the results of computer simulations and experiments. i) The computation time of component mode synthesis is much shorter than that of whole structure analysis. The natural frequencies of lower modes obtained from component mode synthesis are almost same as those obtained from whole structure analysis, but in higher modes the differences between those two methods are increases. ii) The transfer function obtained from building block analysis is same as that obtained from the finite element method. iii) Same transfer functions can be obtained by the reduced impedance method. The computation time of reduced impedance mathod is shorter that that of general finite element method, but for the solutions in broad frequency band it requires long calculation time.

  • PDF

기술함수를 이용한 비선형 결합부를 가진 구조물의 진동해석 (Vibration Analysis of Structure with Nonlinear Joint Using Describing Function)

  • 박해성;지태한;박영필
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.372-379
    • /
    • 1994
  • In this study, the describing function is adopted to represent nonlinearity in the system equations. The compliance can be obtained by solving nonlinear simultaneous algebraic quations for multi-degrees-of-freedom system with multinonlinearities. When the technique is applied, the nonlinearity of the system can be identified from the compliance which is obtained from the sinusoidal excitation of the system. By employing the describing function in the Building Block Analysis, we can extensively develop the BBA into investigation of the continuous systems with nonlinearities. The evaluated compliance can quantitatively show the effects of nonlinearity such as the transfer of the natural frequency, the variance of the compliance at the natural frequency, and the jump phenomena which occur during sweeping of the excitation frequency.

비축대칭 형상의 단조 공정 설계에 관한 연구 (A Study on the Process Design of Non-Axisymmetric Forging Components)

  • Kim, Y.H.;Bae, W.B.;Park, J.H.
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.57-68
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to predict forging load, die-cavity filling, preform in non-axisymmetric forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner, plane-strain part in lateral. The plane-strain and axisymmetric parts are combined by building block method. And the total energy is computed through combination of three deformation parts. A dumbbell-type preform has been obtained from height and volumetric compensations of the billet based on the backward simulation. Experimetns have been carried out with pure plasticine at room temperature. Theoretical predictions are in good agreement with expereimental results.

  • PDF

플래시 없는 비축대칭 단조에 관한 연구 (A Study on Flashless Non-Axisymmetric Forging)

  • 배원병;김영호;최재찬;이종헌;김동영
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.42-52
    • /
    • 1995
  • An UBET(Upper Bound Elemental Techniquel) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless non-axisymmetric forging. To analyze the process easily, it is suggested that the deforma- tion is divided into two different parts. Those are axisymmetric part in corner and plane- strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, form which the upper-bound forging load, the flow pattern, the grid pattern, the velocity distribution and the effective strain are deter- mined. To show the merit of flashless forging, the results of flashless and flash-forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF