• 제목/요약/키워드: 빈발 2-항목집합(L2)

검색결과 3건 처리시간 0.02초

L2-tree를 이용한 효율적인 빈발항목 집합 탐사 (An Efficient Algorithm for mining frequent itemsets using L2-tree)

  • 박인창;장중혁;이원석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.259-261
    • /
    • 2002
  • 데이터마이닝 분야에서 빈발항목집합 탐사에 관한 연구는 활발히 진행되어 왔지만 여전히 많은 메모리 공간과 시간을 필요로 한다. 특히 apriori 알고리즘에 기반한 방법들은 긴 패턴이 생성될수록 지수적으로 시간과 공간이 증가한다. 최근에 발표된 fp-growth는 일반적인 데이터 집합에서 우수한 성능을 보이나 희소 데이터 집합에서 효율적인 성능을 보여주지 못한다. 본 논문에서는 길이가 2인 빈발항목집합 L2에 기반한 L2-tree 구조를 제안한다. 또한 L2-tree에서 빈발항목집합을 탐사하는 L2-traverse 알고리즘을 제안한다. L2-tree는 L2를 기반으로 하기 때문에 L2가 상대적으로 적은 희소 데이터 집합 환경에서 적은 메모리 공간을 사용하게 된다. L2-traverse 알고리즘은 별도의 추출 데이터베이스를 생성하는 FP-growth와 달리 단순히 L2-tree를 오직 한번의 깊이 우선 탐사를 통해 빈발항목집합을 찾는다. 최적화 기법으로써 길이가 3인 빈발항목집합 L3가 되지 않는 L2 패턴들을 미리 제거하는 방법으로 C3-traverse 알고리즘을 제안하며 실험을 통해 기존 알고리즘과 비교 검증한다.

  • PDF

희소 데이터 집합에서 효율적인 빈발 항목집합 탐사 기법 (Efficient Mining of Frequent Itemsets in a Sparse Data Set)

  • 박인창;장중혁;이원석
    • 정보처리학회논문지D
    • /
    • 제12D권6호
    • /
    • pp.817-828
    • /
    • 2005
  • 빈발 항목집합 마이닝 분야의 주된 연구 주제는 수행과정에서의 메모리 사용량을 줄이고 짧은 수행 시간에 마이닝 결과 집합을 얻는 것으로서, 빈발항목 탐색을 위한 다수의 방법들은 Apriori 알고리즘에 기반을 둔 다중 탐색 방법들이다. 또한 최대 빈발 패턴의 길이가 길어질수록 마이닝 수행 시간이 급격히 증가되는 단점을 가진다. 이를 극복하기 위해서 이전의 연구에서 마이닝 수행 시간을 단축하기 위한 다양한 방법들이 제안되었다. 하지만, 다수의 이들 방법들은 희소 데이터 집합에서는 다소 비효율적인 성능을 나타낸다. 본 논문에서도 효율적인 빈발항목 탐색 방법을 제안하였다. 먼저 빈발항목 탐색을 위한 새로운 트리 구조인 $L_2$-tree 구조를 제안하였으며, 더불어 $L_2$-tree를 이용하여 빈발 항목집합을 탐색하는 $L_2$-traverse 알고리즘을 제안하였다. $L_2$-traverse 구조는 길이가 2인 빈발 항목집합 $L_2$에 기반하여 생성되는 것으로서 크기가 매우 작으며, 이를 활용한 $L_2$-traverse 알고리즘은 $L_2$-tree를 단순히 한번 탐색함으로써 전체 빈발 항목집합을 빠른 시간에 구한다. 또한 수행 시간을 보다 단축할 수 있는 방법으로 길이가 3인 빈발 항목집합 $L_3$가 될 수 없는 $L_2$ 패턴들을 미리 제거하는 $C_3$-traverse 알고리즘도 제안하였다. 다양한 실험을 통해 제안된 방법들은 특히 $L_2$가 상대적으로 적은 희소 데이터 집합 환경일 때 기존의 다른 방법들보다 우수함을 검증하였다.

변형된 FP-Tree를 기반한 상품 추천 시스템 (The Goods Recommendation System based on modified FP-Tree Algorithm)

  • 김종희;정순기
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권11호
    • /
    • pp.205-213
    • /
    • 2010
  • 연관규칙 마이닝 기법 중에 하나인 FP-트리 알고리즘을 이용하는 추천시스템이 시도되고 있다. 본 논문에서는 트랜�Ъ� 데이터베이스로부터 빈발 2-항목집합만을 추출하여 연관규칙을 생성하는 변형된 FP-알고리즘을 사용하는 추천시스템을 제안하였다. 제안된 추천시스템은 전처리 모듈, 학습 모듈, 추천 모듈 및 평가 모듈로 구성되었다. 제안된 추천시스템의 실험을 통하여 상품 추천의정확률과 재현율과 F-Measure와 성공률과 추천실행시간을 수행하였으며, 순차패턴 마이닝 기법을 사용하는 추천시스템과의 성능을 비교분석 하였다. 순차패턴 마이닝기법을 사용하는 추천시스템과 학습 성능, 추천 성능을 비교한 결과 학습 성능은 5배 이상 향상되었으며, 추천 성능은 20%이상 향상 되었다. 결론적으로, 순차패턴 추천시스템과 같은 데이터를 가지고 실험하여 추천시스템 성능의 타당성에는 보다 나은 시스템임을 입증 하였다.