• 제목/요약/키워드: 빈발 에피소드

검색결과 6건 처리시간 0.022초

네트워크 공격 분석을 위한 마이닝 프로토타입 시스템 구현 (An Implementation of Mining Prototype System for Network Attack Analysis)

  • 김은희;신문선;류근호
    • 정보처리학회논문지C
    • /
    • 제11C권4호
    • /
    • pp.455-462
    • /
    • 2004
  • 네트워크 공격은 인터넷의 발달과 함께 유형도 다양하고 새로워지고 있다. 기존의 침입탐지 시스템들은 알려진 공격의 시그네처를 기반으로 탐지하기 때문에 알려지지 않거나 변형된 공격을 탐지하고, 대응하기 위해서는 많은 노력과 비용이 필요하다. 본 논문에서는 네트워크 프로토콜 속성 분석을 통해 알려지지 않거나 변형된 네트워크 공격을 예측할 수 있는 마이닝 프로토타입 시스템을 설계 하고 구현 하였다. 네트워크 프로토콜 속성을 분석하기 위해서 연관규칙과 빈발에피소드 기법을 사용하였으며, 수집된 네트워크 프로토콜은 TCP, UDP, ICMP와 통합된 형태의 스키마로 저장한다. 본 실험을 통해서 각 프로토콜별로 발생 가능한 네트워크 공격 유형을 예측할 수 있는 규칙들을 생성한다. 마이닝 프로토타입은 침입탐지 시스템에서 새로운 공격에 대응하기 위한 보조적인 .도구로서 유용하게 사용될 수 있다.

웹 로그 마이닝을 이용한 웹 문서 예측 시스템 (Web Document Prediction System by using Web Log Mining)

  • 이범석;황병연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.97-99
    • /
    • 2005
  • 웹 문서 수의 급격한 증가는 사용자로 하여금 방대한 양의 웹 문서들로부터 필요한 정보를 선별하기 위한 시간과 비용을 낭비하게 만들었다. 따라서 이러한 문제를 해결하기 위한 연구의 필요성이 점차 증가하였는데, 그 중 웹 서버 로그 데이터에 마이닝 기법을 적용하여 사용자들의 사이트 내 문서의 접근 패턴을 분석하고, 그 데이터를 이용하여 동적으로 변화하는 적응형 웹 사이트를 제공하려는 것이 대표적인 연구 사례이다. 본 논문에서는 웹 서버 로그 마이닝을 이용하여 사용자가 필요로 하거나, 관심을 가지고 있는 페이지를 예측하여 추천해 주는 시스템에 대해 소개한다. 이러한 시스템을 구현하기 위해 순차 패턴 마이닝이나 빈발 에피소드 발견 기법 등의 알고리즘을 사용할 수 있다. 제안하는 시스템에서는 사용자 접근 패턴을 분석할 때 순차 패턴 마이닝 기법을 사용하고, 사용자의 이동 패턴을 근거로 웹 문서를 예측하여 추천해줄 때에는 에피소드 발견 기법에서의 window 개념을 이용한다. 본 논문에서 제안한 시스템은 웹 문서를 사용자가 머물었던 시간에 따라 관심 있는 문서와 지나간 문서로 구분하여 관심 있는 문서에 대해서안 마이닝을 수행한다. 또한 일정한 크기를 갖는 History window에 의해 다음 문서를 추천해주기 때문에 사용자의 모든 로그를 저장하지 않으므로 보다 효율적이다.

  • PDF

네트워크 침입 탐지를 위한 사례 기반 학습 방법 (Instance-Based Learning for Intrusion Detection)

  • 박미영;이도헌;원용관
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.172-174
    • /
    • 2001
  • 침입 탐지란 컴퓨터와 네트워크 지원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 따라, 대용량의 데이터를 지능적으로 분석하여 의미있는 정보를 추출하는 데이터 마이닝 기법을 적용함으로써 지능적이고 자동화된 탐지를 수행할 수 있도록 한다. 본 논문에서는 학습 데이터를 각각 사례로 데이터베이스에 저장한 후, 실험 데이터가 입려되면 가장 가까운 거리에 있는 학습 데이터의 크래스로 분류하는 사례 기반 학습을 이용하여 빠르게 사용자의 이상 행위에 대해 판정한다. 그러나 많은 사례로 인해 기억 공간이 늘어날 경우 시스템의 성능이 저하되는 문제점을 고려하여, 빈발 에피소드 알고리즘을 수행하여 발견한 순차 패턴을 사례화하여 정상 행위 프로파이로 사용하는 순차패턴에 대한 사례 기반 학습을 제안한다. 이로써, 시스템 성능의 저하율을 낮추고 빠르며 정확하게 지능적인 침입 탐지를 수행할 수 있다.

  • PDF

시간연관규칙과 분류규칙을 이용한 비정상행위 탐지 기법 (Anomaly Detection using Temporal Association Rules and Classification)

  • 이헌규;이양우;김룡;서성보;류근호;박진수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (하)
    • /
    • pp.1579-1582
    • /
    • 2003
  • 점차 네트워크상의 침입 시도가 증가되고 다변화되어 침입탐지에 많은 어려움을 주고 있다. 시스템에 새로운 침입에 대한 탐지능력과 다량의 감사데이터의 효율적인 분석을 위해 데이터마이닝 기법이 적용된다. 침입탐지 방법 중 비정상행위 탐지는 모델링된 정상행위에서 벗어나는 행위들을 공격행위로 간주하는 기법이다. 비정상행위 탐지에서 정상행위 모델링을 하기 위해 연관규칙이나 빈발에피소드가 적용되었다. 그러나 이러한 기법들에서는 시간요소를 배제하거나 패턴들의 발생순서만을 다루기 때문에 정확하고 유용한 정보를 제공할 수 없다. 따라서 이 논문에서는 이 문제를 해결할 수 있는 시간연관규칙과 분류규칙을 이용한 비정상행위 탐지 모델을 제안하였다. 즉, 발생되는 패턴의 주기성과 달력표현을 이용, 유용한 시간지식표현을 갖는 시간연관규칙을 이용해 정상행위 프로파일을 생성하였고 이 프로파일에 의해 비정상행위로 간주되는 규칙들을 발견하고 보다 정확한 비정상행위 판별 여부를 결정하기 위해서 분류기법을 적용하였다.

  • PDF

감사데이터 분석을 위한 마이닝 시스템 설계 및 구현 (Design and Implementation of Mining System for Audit Data Analysis)

  • 김은희;문호성;신문선;류근호;김기영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.4-6
    • /
    • 2002
  • 네트워크의 광역화와 새로운 공격 유형의 발생으로 침입 탐지 시스템에서 새로운 시퀀스의 추가나 침입탐지 모델 구축의 수동적인 접근부분이 문제가 되고 있다. 특히 기존의 침입탐지 시스템들은 대량의 네트워크 하부구조를 가진 네트워크 정보를 수집 및 분석하는데 있어 각각 전담 시스템들이 담당하고 있다. 따라서 침입탐지 시스템에서 증가하는 많은 양의 감사데이터를 분석하여 다양한 공격 유형들에 대해서 능동적으로 대처할 수 있도록 하는 것이 필요하다. 최근, 침입 탐지 시스템에 데이터 마이닝 기법을 적용하여 능동적인 침입탐지시스템을 구축하고자 하는 연구들이 활발히 이루어지고 있다. 이 논문에서는 대량의 감사 데이터를 정확하고 효율적으로 분석하기 위한 마이닝 시스템을 설계하고 구현한다. 감사데이터는 트랜잭션데이터베이스와는 다른 특성을 가지는 데이터이므로 이를 고려한 마이닝 시스템을 설계하였다. 구현된 마이닝 시스템은 연관규칙 기법을 이용하여 감사데이터 속성간의 연관성을 탐사하고, 빈발 에피소드 기법을 적용하여 주어진 시간 내에서 상호 연관성 있게 발생한 이벤트들을 모음으로써 연속적인 시간간격 내에서 빈번하게 발생하는 사건들의 발견과 알려진 사건에서 시퀀스의 행동을 예측하거나 기술할 수 있는 규칙을 생성한 수 있다. 감사데이터의 마이닝 결과 생성된 규칙들은 능동적인 보안정책을 구축하는데 활용필 수 있다. 또한 데이터양의 감소로 침입 탐지시간을 최소화하는데도 기여한 것이다.

  • PDF

침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크 (An Alert Data Mining Framework for Intrusion Detection System)

  • 신문선
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.459-466
    • /
    • 2011
  • 이 논문에서는 침입 탐지시스템의 체계적인 경보데이터관리 및 경보데이터 상관관계 분석을 위하여 데이터 마이닝 기법을 적용한 경보 데이터 마이닝 프레임워크를 제안한다. 적용된 마이닝 기법은 속성기반 연관규칙, 속성기반 빈발에피소드, 오경보 분류, 그리고 순서기반 클러스터링이다. 이들 구성요소들은 각각 대량의 경보 데이터들로부터 알려지지 않은 패턴을 탐사하여 공격시나리오를 유추하거나, 공격 순서를 예측하는 것이 가능하며, 데이터의 그룹화를 통해 고수준의 의미를 추출할 수 있게 해준다. 실험 및 평가를 위하여 제안된 경보데이터 마이닝 프레임워크의 프로토타입을 구축하였으며 프레임워크의 기능을 검증하였다. 이 논문에서 제안한 경보 데이터 마이닝 프레임워크는 기존의 경보데이터 상관관계분석에서는 해결하지 못했던 통합적인 경보 상관관계 분석 기능을 수행할 뿐만 아니라 대량의 경보데이터에 대한 필터링을 수행하는 장점을 가진다. 또한 추출된 규칙 및 공격시나리오는 침입탐지시스템의 실시간 대응에 활용될 수 있다.