• Title/Summary/Keyword: 빅 데이터 분석

Search Result 2,948, Processing Time 0.028 seconds

Analysis of Topic Changes in Metaverse Application Reviews Before and After the COVID-19 Pandemic Using Causal Impact Analysis Techniques (Causal Impact 분석 기법을 접목한 COVID-19 팬데믹 전·후 메타버스 애플리케이션 리뷰의 토픽 변화 분석)

  • Lee, Sowon;Mijin Noh;MuMoungCho Han;YangSok Kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • Metaverse is attracting attention as the development of virtual environment technology and the emergence of untact culture due to the COVID-19 pandemic. In this study, by analyzing users' reviews on the "Zepeto" application, which has recently attracted attention as a metaverse service, we tried to confirm changes in the requirements for the metaverse after the COVID-19 pandemic. To this end, 109,662 reviews of "Zepeto" applications written on the Google Play Store from September 2018 to March 2023 were collected, topics were extracted using LDA topic modeling technique, and topics were analyzed using the Causal Impact technique to examine how topics changed before and after based on "March 11, 2020" when the COVID-19 pandemic was declared. As a result of the analysis, five topics were extracted: application functional problems (topic1), security problems (topic 2), complaints about cryptocurrency (Zem) in the application (topic 3), application performance (topic 4), and personal information-related problems (topic 5). Among them, it was confirmed that security problems (topic 2) were most affected by the COVID-19 pandemic.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

Korea National College of Agriculture and Fisheries in Naver News by Web Crolling : Based on Keyword Analysis and Semantic Network Analysis (웹 크롤링에 의한 네이버 뉴스에서의 한국농수산대학 - 키워드 분석과 의미연결망분석 -)

  • Joo, J.S.;Lee, S.Y.;Kim, S.H.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.71-86
    • /
    • 2021
  • This study was conducted to find information on the university's image from words related to 'Korea National College of Agriculture and Fisheries (KNCAF)' in Naver News. For this purpose, word frequency analysis, TF-IDF evaluation and semantic network analysis were performed using web crawling technology. In word frequency analysis, 'agriculture', 'education', 'support', 'farmer', 'youth', 'university', 'business', 'rural', 'CEO' were important words. In the TF-IDF evaluation, the key words were 'farmer', 'dron', 'agricultural and livestock food department', 'Jeonbuk', 'young farmer', 'agriculture', 'Chonju', 'university', 'device', 'spreading'. In the semantic network analysis, the Bigrams showed high correlations in the order of 'youth' - 'farmer', 'digital' - 'agriculture', 'farming' - 'settlement', 'agriculture' - 'rural', 'digital' - 'turnover'. As a result of evaluating the importance of keywords as five central index, 'agriculture' ranked first. And the keywords in the second place of the centrality index were 'farmers' (Cc, Cb), 'education' (Cd, Cp) and 'future' (Ce). The sperman's rank correlation coefficient by centrality index showed the most similar rank between Degree centrality and Pagerank centrality. The KNCAF articles of Naver News were used as important words such as 'agriculture', 'education', 'support', 'farmer', 'youth' in terms of word frequency. However, in the evaluation including document frequency, the words such as 'farmer', 'dron', 'Ministry of Agriculture, Food and Rural Affairs', 'Jeonbuk', and 'young farmers' were found to be key words. The centrality analysis considering the network connectivity between words was suitable for evaluation by Cd and Cp. And the words with strong centrality were 'agriculture', 'education', 'future', 'farmer', 'digital', 'support', 'utilization'.

Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)

  • Lee, Jae Kyu;Park, Heesung;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.95-112
    • /
    • 2021
  • In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.

An Empirical Study on the Participatory Use of K-Pop Video Contents (케이팝 콘텐츠의 참여적 이용에 관한 연구 : 유튜브 콘텐츠 관계망분석(SNA)을 중심으로)

  • Kim, H. Jin;Ahn, Minho
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • It is apparently clear that K-pop has been expanding its influence overseas, with its high growth rate. As a result, attempts have been made to analyze the characteristics of K-Pop in various academic fields. This research quantitatively used the participatory use process of K-Pop contents in voluntary participation and dissemination of the audience in the Trans-Media environment. The author examined the use of participatory K-Pop contents from the view point of reparability through big data content analysis. It has been revealed that K-Pop is spreading globally through social media, fans of various countries like to play K-Pop, and they make up their own content and form a participatory culture. In addition, we looked at when the moments of momentum in which participatory use is soaring were popular content and who was the publisher.

Analysis of the relationship between service robot and non-face-to-face

  • Hwang, Eui-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.247-254
    • /
    • 2021
  • As COVID-19 spread, non-face-to-face activities were required, and the use of service robots is gradually increasing. This paper analyzed the relationship between the increasing trend of service robots before and after COVID-19 through keyword search containing the keyword 'service robot AND non-face-to-face' over the past three years (2018.10-20219) using BigKines, a news big data analysis system. As a result, there were 0 cases in the first period (2018.10~2019.9), 52 cases in the second period (2019.10~2020.9) and 112 cases in the third period (2020.10~2021.9), an increase of 115% compared to the second period. The keywords commonly mentioned in the analysis of related words in the second and third periods were COVID-19, AI, the Ministry of Trade, Industry, and Energy, and LG Electronics, and the weight of COVID-19 was the largest, confirming that the analysis keyword. Due to the spread of Corona 19, non-face-to-face is required, and with the development of information and communication technology, the field of application of service robots is rapidly increasing. Accordingly, for the commercialization of service robots that will lead the non-face-to-face economy, there is an urgent need to nurture human resources that require standardization and expertise in safety and performance fields.

Application of Hot Spot Analysis for Interpreting Soil Heavy-Metal Concentration Data in Abandoned Mines (폐금속 광산의 토양 중금속 오염 조사 자료 해석을 위한 핫스팟 분석의 적용)

  • LEE, Chae-Young;KIM, Sung-Min;CHOI, Yo-Soon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.24-35
    • /
    • 2019
  • In this study, a hotspot analysis was conducted to suggest a new method for interpreting soil heavy-metal contamination data of abandoned metal mines according to statistical significance level. The spatial autocorrelation of the data was analyzed using the Getis-Ord $Gi{\ast}$ statistic in order to check whether soil heavy metal contamination data showing abnormal values appeared concentrated or dispersed in a specific space. As a result, the statistically significant data showing abnormal values in the mine area could be classified as follows: (1) the contamination degree and the hotspot value (z-score) were both high, (2) the contamination degree was high but the z-score was low, (3) the contamination degree was low but the z-score was high and (4) the contamination degree and the z-score were both low. The proposed method can be used to interpret the soil heavy metal contamination data according to the statistical significance level and to support a rational decision for soil contamination management in abandoned mines.

Trend Analysis of Medical Care Utilization among People with Autistic Spectrum Disorder Using National Health Insurance Data (자폐성장애인의 의료이용 경향분석 및 시사점 : 국민건강보험자료를 이용한 융복합적 접근)

  • Yun, Jieun;Kim, Hyun Joo
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.411-418
    • /
    • 2018
  • The purpose of this study was to estimate the current status and trends of healthcare utilization among people with ASD. Using National Health Insurance open database, from 2010 to 2017. We analyzed the treatment prevalence for people with ASD, the pattern of healthcare utilization, the difference in medical care utilization according to age, and the type and location of main medical institutions. The main results of the study are as follows: First, the medical utilization has been continuously increasing from 2010 to 2017. The total amount of medical utilization is increased by 50% in 2017 compared to 2010, and the treatment prevalence was estimated to be 79.1% in 2017 and medical uses for the next three years is also increasing. Second, the pattern of medical care utilization varied widely according to age, especially after 20 years of age. Third, the types of medical institutions that were mainly used were 45.6% in the medical clinic and 35.9% in Seoul. The results of this study can be used as a minimum reference point of evaluating the effectiveness of government policy on future autistic disorders. However, further studies are required to increase the prevalence of treatment for autistic patients and to find out the difference in medical use according to age.

A Critical Review on Social Media Campaign Studies: Trends and Issues (소셜미디어 선거캠페인 연구 동향과 쟁점)

  • Chang, Woo-young
    • Informatization Policy
    • /
    • v.26 no.1
    • /
    • pp.3-24
    • /
    • 2019
  • This study examined the trends and issues of social media campaign studies from three aspects-campaign strategy, institutional environment regulating the social media, and political effect. Then, this study performed an empirical analysis on the case of the 20th general election in order to discuss the political effect, which has been analyzed the least. Specifically, this study empirically examined the trends of candidates' participation in the twitter campaign, the partial mobilization and voter response, and the platform effect on the election results. The study examined all of the candidates' twitter accounts and traffic and found the following results.-first, the number of participants in the twitter campaign increased significantly compared to the 19th general election, and the campaign was dominated by only two political parties that had more power to mobilize resources; second, it was clearly identified that twitter is a partisan media. where specifically, those in the mainstream of the Democratic Party mobilized much more supporters; and lastly, the twitter campaign has a positive impact on the increase in the rate of votes and chances of winning the election. Particularly, the number of followers and the duration of activities were found statistically meaningful, proving that promotion of networking and social capital is more important in election campaigns.

A Study on the Information Strategy Planing for the Construction of the Online Information System for the Transaction of Art (미술품 거래정보 온라인 제공시스템 구축을 위한 정보전략계획)

  • Seo, Byeong-Min
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.61-70
    • /
    • 2019
  • The The government has recently announced its mid- to long-term plans for promoting art. With the advent of the 4th industrial revolution, contemporary art contents that are integrated with Intelligent Information Technologies such as Artificial Intelligence (AI), Virtual Reality (VR), and Big Data are being introduced, and social interest in humanities and creative convergence is rising. In addition, the industrialization of the art market is expanding amid the rising popularity of art among the general public and the growing interest of art as an investment replacement system, along with the strengthening of the creative personality education of our Education Ministry. Therefore, it is necessary to establish a strategy for transparency and revitalization of the art market by providing comprehensive information such as search functions, analysis data, and criticism by writer and price. This paper has established an information system plan for the establishment of an online supply system for art transaction information, providing auction transaction information for art market, providing report and news for art market, providing public relations platform, and providing art market analysis service and membership relationship management service. To this end, the future model was established through environmental analysis and focus analysis of the art market, and strategic tasks and implementation plans were established accordingly.