• Title/Summary/Keyword: 빅데이터 분석 플랫폼

Search Result 344, Processing Time 0.03 seconds

A Comparative Study on the Social Awareness of Metaverse in Korea and China: Using Big Data Analysis (한국과 중국의 메타버스에 관한 사회적 인식의 비교연구: 빅데이터 분석의 활용 )

  • Ki-youn Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.71-86
    • /
    • 2023
  • The purpose of this exploratory study is to compare the differences in public perceptual characteristics of Korean and Chinese societies regarding the metaverse using big data analysis. Due to the environmental impact of the COVID-19 pandemic, technological progress, and the expansion of new consumer bases such as generation Z and Alpha, the world's interest in the metaverse is drawing attention, and related academic studies have been also in full swing from 2021. In particular, Korea and China have emerged as major leading countries in the metaverse industry. It is a timely research question to discover the difference in social awareness using big data accumulated in both countries at a time when the amount of mentions on the metaverse has skyrocketed. The analysis technique identifies the importance of key words by analyzing word frequency, N-gram, and TF-IDF of clean data through text mining analysis, and analyzes the density and centrality of semantic networks to determine the strength of connection between words and their semantic relevance. Python 3.9 Anaconda data science platform 3 and Textom 6 versions were used, and UCINET 6.759 analysis and visualization were performed for semantic network analysis and structural CONCOR analysis. As a result, four blocks, each of which are similar word groups, were driven. These blocks represent different perspectives that reflect the types of social perceptions of the metaverse in both countries. Studies on the metaverse are increasing, but studies on comparative research approaches between countries from a cross-cultural aspect have not yet been conducted. At this point, as a preceding study, this study will be able to provide theoretical grounds and meaningful insights to future studies.

A Study on the Changes in Perspectives on Unwed Mothers in S.Korea and the Direction of Government Polices: 1995~2020 Social Media Big Data Analysis (한국미혼모에 대한 관점 변화와 정부정책의 방향: 1995년~2020년 소셜미디어 빅데이터 분석)

  • Seo, Donghee;Jun, Boksun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.305-313
    • /
    • 2021
  • This study collected and analyzed big data from 1995 to 2020, focusing on the keywords "unwed mother", "single mother," and "single mom" to present appropriate government support policy directions according to changes in perspectives on unwed mothers. Big data collection platform Textom was used to collect data from portal search sites Naver and Daum and refine data. The final refined data were word frequency analysis, TF-IDF analysis, an N-gram analysis provided by Textom. In addition, Network analysis and CONCOR analysis were conducted through the UCINET6 program. As a result of the study, similar words appeared in word frequency analysis and TF-IDF analysis, but they differed by year. In the N-gram analysis, there were similarities in word appearance, but there were many differences in frequency and form of words appearing in series. As a result of CONCOR analysis, it was found that different clusters were formed by year. This study confirms the change in the perspective of unwed mothers through big data analysis, suggests the need for unwed mothers policies for various options for independent women, and policies that embrace pregnancy, childbirth, and parenting without discrimination within the new family form.

SDN based IoT Platform (SDN 기반 IoT 플랫폼)

  • Youn, Byungseong;Cho, Hyungho;Choi, Kyuhwi;Kim, Jigun
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.207-209
    • /
    • 2015
  • SDN은 기존 네트워크 장비의 하드웨어와 제어 부분을 분리하는 새로운 네트워크 기술로 중앙 집중 형태를 통해 효율적인 네트워크 관계가 가능하다. IoT 네트워크는 주변의 수많은 장치들을 상호 연결하는 환경으로, 각 장비의 연결과 통신, 발생하는 데이터의 빠른 처리가 요구된다. 본 논문에서는 IoT 네트워크에서 발생하는 빅데이터를 실시간으로 분석 및 처리하고, 최적화된 SDN 컨트롤러를 이용해 IoT 환경에서 효율적인 데이터 처리 및 네트워크 관제가 가능한 SDN 기반 IoT 플랫폼을 제안한다.

Personal Recommendation Service Design Through Big Data Analysis on Science Technology Information Service Platform (과학기술정보 서비스 플랫폼에서의 빅데이터 분석을 통한 개인화 추천서비스 설계)

  • Kim, Dou-Gyun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.4
    • /
    • pp.501-518
    • /
    • 2017
  • Reducing the time it takes for researchers to acquire knowledge and introduce them into research activities can be regarded as an indispensable factor in improving the productivity of research. The purpose of this research is to cluster the information usage patterns of KOSEN users and to suggest optimization method of personalized recommendation service algorithm for grouped users. Based on user research activities and usage information, after identifying appropriate services and contents, we applied a Spark based big data analysis technology to derive a personal recommendation algorithm. Individual recommendation algorithms can save time to search for user information and can help to find appropriate information.

Design of the Intelligent LBS Service : Using Big Data Distributed Processing System (빅데이터 분산처리 시스템을 활용한 지능형 LBS서비스의 설계)

  • Mun, Chang-Bae;Park, Hyun-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.159-169
    • /
    • 2019
  • Today, the location based service(LBS) is globally developing with the advance of smart phones and IOT devices. The main purpose of this research is to provide users with the most efficient route information, analyzing big data of people with a variety of routes. This system will enable users to have a similar feeling of getting a direct guidance from a person who has often used the route. It is possible because the system server analyzes the route information of people in real time, after composing the distributed processing system on the basis of map information. In the future, the system will be able to amazingly develop with the association of various LBS services, providing users with more precise and safer route information.

Development of Frequent Sequence Extractor Based on Hadoop (하둡 기반 빈발 시퀀스 추출기 개발)

  • Park, Joon-Ha;Lee, Byung-Hee;Park, Sang-Jae;Lee, Jeong-Joon
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1199-1202
    • /
    • 2013
  • 최근 증권, 센서, 기후, 의료 분야 등에서 수많은 시계열 데이터들이 쏟아져 나오고 있고, 이러한 시계열 빅 데이터를 통해 의미를 찾아내고자 하는 시계열 해석 및 분석, 예측 작업의 수요가 증가하고 있다. 시계열 해석 및 분석, 예측 작업을 하기 위해서 사용 될 수 있는 기초 작업은 유사한 시계열 시퀀스를 찾아내는 유사 시퀀스 매칭과 이러한 매칭을 통해 특정 시계열 데이터의 하나의 특징이 되는 빈발 시퀀스 추출 기술이 필요하다. 본 논문에서는 이러한 시계열 빅 데이터에서 유사 시퀀스 매칭을 이용한 빈발 시퀀스 추출 문제를 효율적으로 해결하는 빈발 시퀀스 추출기(Frequent Sequence Extractor)를 개발 및 구현하였다. 또한 분산처리 플랫폼인 하둡을 이용한 데이터 파싱을 사용하여, 각 분야별 시계열 데이터를 분석하는 전문가에게 효율적인 분산처리 효과를 제공한다.

An Exploratory Study on the Initial Activation Strategy of UGC Platform with Contents Provider and Consumer (콘텐츠의 공급자와 소비자로 이루어진 UGC 플랫폼의 초기 활성화 방안에 대한 탐색적 연구 : 시스템다이내믹스를 이용한 초기 스타트업의 UGC 플랫폼을 중심으로)

  • Jung, Jee-Wong;Lee, Kyung-Sang;Lee, Zoon-Ky
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.83-94
    • /
    • 2018
  • The purpose of this study is to investigate how startup companies with the UGC platform service model can traverse the death valley for the company's survival with limited resources and create a mutually beneficial market. To do this, an interview-based exploratory study was conducted to analyze the cause and effect of each factor on the initial activation strategy of the UGC platform. For many start-up companies, this research helps minimize errors in strategic trial and error.

A Study on Factors Affecting BigData Acceptance Intention of Agricultural Enterprises (농업 관련 기업의 빅데이터 수용 의도에 미치는 영향요인 연구)

  • Ryu, GaHyun;Heo, Chul-Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.157-175
    • /
    • 2022
  • At this moment, a paradigm shift is taking place across all sectors of society for the transition movements to the digital economy. Various movements are taking place in the global agricultural industry to achieve innovative growth using big data which is a key resource of the 4th industrial revolution. Although the government is making various attempts to promote the use of big data, the movement of the agricultural industry as a key player in the use of big data, is still insufficient. Therefore, in this study, effects of performance expectations, effort expectations, social impact, facilitation conditions, based on the Unified Theory of Acceptance and Use of Technology(UTAUT), and innovation tendencies on the acceptance intention of big data were analyzed using the economic and practical benefits that can be obtained from the use of big data for agricultural-related companies as moderating variables. 333 questionnaires collected from agricultural-related companies were used for empirical analysis. The analysis results using SPSS v22.0 and Process macro v3.4 were found to have a significant positive (+) effect on the intention to accept big data by effort expectations, social impact, facilitation conditions, and innovation tendencies. However, it was found that the effect of performance expectations on acceptance intention was insignificant, with social impact having the greatest influence on acceptance intention and innovation tendency the least. Moderating effects of economic benefit and practical benefit between effort expectation and acceptance intention, moderating effect of practical benefit between social impact and acceptance intention, and moderating effect of economic benefit and practical benefit between facilitation condition and acceptance intention were found to be significant. On the other hand, it was found that economic benefits and practical benefits did not moderate the magnitude of the influence of performance expectations and innovation tendency on acceptance intention. These results suggest the following implications. First, in order to promote the use of big data by companies, the government needs to establish a policy to support the use of big data tailored to companies. Significant results can only be achieved when corporate members form a correct understanding and consensus on the use of big data. Second, it is necessary to establish and implement a platform specialized for agricultural data which can support standardized linkage between diverse agricultural big data, and support for a unified path for data access. Building such a platform will be able to advance the industry by forming an independent cooperative relationship between companies. Finally, the limitations of this study and follow-up tasks are presented.

Comparison and Analysis of Domestic and Foreign Sports Brands Using Text Mining and Opinion Mining Analysis (텍스트 마이닝과 오피니언 마이닝 분석을 활용한 국내외 스포츠용품 브랜드 비교·분석 연구)

  • Kim, Jae-Hwan;Lee, Jae-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.217-234
    • /
    • 2018
  • In this study, big data analysis was conducted for domestic and international sports goods brands. Text Mining, TF-IDF, Opinion Mining, interestity graph were conducted through the social matrix program Textom and the fashion data analysis platform MISP. In order to examine the recent recognition of sports brands, the period of study is limited to 1 year from January 1, 2017 to December 31, 2017. As a result of analysis, first, we could confirm the products representing each brand. Second, I could confirm the marketing that represents each brand. Third, the common words extracted from each brand were identified. Fourth, the emotions of positive and negative of each brand were confirmed.

Couple Matching Platform through Style Analysis (스타일 분석을 통한 커플 매칭 플랫폼)

  • Choe, Hyeong Rak;Jo, Sung un;Kim, Dong Ha;Moon, Jae Hyun
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.868-871
    • /
    • 2019
  • 본연구는 커플들의 이미지 빅 데이터를 분석하여 각각 얼굴과 패션에 따라 유사한 유형 끼리 클러스터링 하여 새로운 사람 이미지가 주어졌을 때 해당 사람이 어느 유형에 속하는지 찾아내고 해당 유형의 사람들은 어떤 유형의 이성과 잘 맞는지 찾아 추천해주는 플랫폼이다. 빅 데이터를 수집하기 위하여 SNS상에서 커플들의 이미지를 크롤링하여 저장한다. 수집된 커플들의 이미지를 AI 머신 러닝으로 나이, 성별을 분석하여 미리 설정한 나이대의 이성 커플들의 이미지 만을 추려내서 각각 남, 여의 이미지를 분리하여 저장한다. 해당 이미지들로 비슷한 얼굴, 패션 유형의 사람들을 같은 클러스터로 모으고 CNN 으로 학습 시켜서 새로운 이미지가 들어올 경우 효율적으로 해당 이미지가 어느 클러스터에 속하는지 찾아낼 수 있도록 한다. 특정 이미지가 속하는 클러스터를 찾아내면 해당 클러스터에 속하는 사람들의 연인들이 어느 클러스터에 가장 많이 포함되어 있는지 찾아서 해당 클러스터 유형의 이성을 추천해준다. 웹과 어플리케이션으로 이루어진 플랫폼 서비스이며, 커플 매칭 기능 뿐만 아니라 매칭된 회원 간 연락 기능, 실제 커플의 이미지로 두 사람의 매칭도 확인 등의 부가적 기능 또한 인공 지능 서비스로 제공된다.