Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.291-292
/
2022
최근 4차 산업혁명이 대두됨에 따라 빅데이터 시장의 지속적인 성장과 다양한 데이터 시각화 플랫폼이 개발되고 있다. 해양 산업에서도 선박, 다이버, 기상 API 등 다양한 해양 데이터를 통해 꾸준한 연구가 이루어지고 있으며 본 연구에서는 해양 데이터를 기반으로 데이터 분석 및 시각화를 통해 사용자에게 정보를 제공하는 플랫폼을 제시하고, 기하급수적으로 늘어날 빅데이터를 효과적으로 분석하기 위해 데이터 분석 및 시각화 기법 연구의 필요성을 제시하였음.
With the recent growth of the big data technology market, interest in visualization technology has steadily increased over the past few years. Data visualization is currently used in a wide range of disciplines such as information science, computer science, human-computer interaction, statistics, data mining, cartography, and journalism, each with a slightly different meaning. Big data visualization in smart cities that require multidisciplinary research enables an objective and scientific approach to developing user-centered smart city services and related policies. In particular, spatial-based data visualization enables efficient collaboration of various stakeholders through visualization data in the process of establishing city policy. In this paper, a user-centered spatial big data visualization expression request method was derived by examining the spatial-based big data visualization expression process and principle from the viewpoint of effective information delivery, not just a visualization tool.
In this study, define the concept of spatial big data and special feature of spatial big data, examine information visualization methodology for increase the insight into the data. Also presented problems and solutions in the visualization process. Spatial big data is defined as a result of quantitative expansion from spatial information and qualitative expansion from big data. Characteristics of spatial big data id defined as 6V (Volume, Variety, Velocity, Value, Veracity, Visualization), As the utilization and service aspects of spatial big data at issue, visualization of spatial big data has received attention for provide insight into the spatial big data to improve the data value. Methods of information visualization is organized in a variety of ways through Matthias, Ben, information design textbook, etc, but visualization of the spatial big data will go through the process of organizing data in the target because of the vast amounts of raw data, need to extract information from data for want delivered to user. The extracted information is used efficient visual representation of the characteristic, The large amounts of data representing visually can not provide accurate information to user, need to data reduction methods such as filtering, sampling, data binning, clustering.
Today, research is actively being conducted to derive meaningful results from big data. In this paper, we propose a partition-based big data analysis algorithm that can analyze the correlation between variables by setting the data areas of big data as partitions and calculating the representative values of each partition. In this paper, the analyzed visualization results are compared according to the partition size of a proposed partition-based big data analysis (PBDA) algorithm that can control the size of the partition. In order to verify the proposed PBDA algorithm, the big data of 'A' is analyzed, and meaningful results are obtained through the analysis of changes in sales volume of products according to changes in temperature and sales price.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.290-293
/
2017
최근 IoT 기술발달로 인한 스마트폰 및 대용량 미디어기기 사용증가로 인터넷 네트워크 사용량이 폭발적으로 증가되고 있고, 이러한 데이터 사용량 급증으로 대량의 데이터를 지칭하는 빅데이터 수집 및 분석에 많은 기업과 정부가 주목하고 있다. 빅데이터는 기존에 없던 새로운 데이터의 구축이 아니며, 그동안 축적된 다방면의 방대한 데이터의 집합이라 할 수 있다. 빅데이터의 이용 및 분석에 대한 기업 정부 학계의 수요는 증가하고 있지만, 고난도의 빅데이터 분석을 위한 인프라 구축이 선결과제이어서, 이러한 인프라구축 비용 때문에 빅데이터 분석이 일선 산업분야에 바로 적용하는데 많은 장애요인이 되어 데이터 분석가들의 빅데이터 분석에 애로사항으로 존재하고 있다. 이러한 어려움을 해소하기 위한 방안으로 새로운 인프라 구축 없이 Google Analytics API를 연동한 R 프로그래밍의 데이터 시각화를 활용한 데이터 분석 방안을 제시하고자 한다. 본 연구에서는 구글 애널리틱스 API를 연동하여 사용자 웹사이트의 사용자접속, 사이트운영, 이벤트 발생 등의 데이터를 R 프로그램을 활용하여 사이트 현황을 데이터 시각화로 분석하고 운영중인 웹사이트에 적용 가능한 콘텐츠 개발 방안에 대해 연구하였다.
Seoung-Bin Ye;Jeong-Seon Park;Hyi-Thaek Ceong;Soon-Hee Han
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.4
/
pp.763-770
/
2024
Currently, land-based fish farms utilizing seawater have introduced and are utilizing various equipment such as real-time water quality monitoring systems, facility automation systems, and automated dissolved oxygen supply devices. Furthermore, data collected from various equipment in these fish farms produce structured and unstructured big data related to water quality environment, facility operations, and workplace visual information. The big data generated in the operational environment of fish farms aims to improve operational and production efficiency through the development and application of various methods. This study aims to develop a system for effectively analyzing and visualizing big data produced from land-based fish farms. It proposes a data visualization process suitable for use in a fish farm big data analysis system, develops big data visualization tools, and compares the results. Additionally, it presents intuitive visualization models for exploring and comparing big data with time-series characteristics.
The reason why today's public actively uses social communication is that the necessary information is collected and classified under the name of social big data through the web space to create the big data era, an ecosystem of information. In order for big data information to be used by the public, it is necessary to visualize it easily. This study categorized the types of visualization according to the information of social big data, and targeted the experienced students including the related majors and the general public who need to directly utilize and study the actual big data visualization as an experience evaluation target. As a result of analyzing the experiences of the experienced people, important implications for the visualization method for managing, analyzing, and utilizing the data were derived. The big data visualization strategy is to be expressed in a way that fits the data environment and user's eye level on SNS. In the future, if big data visualization is applied to product service or social trend, it will be an important data in terms of broadening its role, scope of application, and application.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1301-1311
/
2017
Manufacturing big data systems have supported decision making that can improve preemptive manufacturing activities through collection, storage, management, and predictive analysis of related 4M data in pre-manufacturing processes. Effective visualization of data is crucial for efficient management and operation of data in these systems. This paper presents visualization techniques that can be used to effectively show data collection, analysis, and prediction results in the manufacturing big data systems. Through the visualization technique presented in this paper, we have confirmed that it was not only easy to identify the problems that occurred at the manufacturing site, but also it was very useful to reply to these problems.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.12
/
pp.2305-2311
/
2017
In recent years, there have been tries to open public data from various government agencies along with publicization of public information for the public interest. In other words, various kinds of electronic data generated and collected by the public institutions as a result of their work are opened in the public portal sites. However, users who use it are limited in their use of big data due to lack of understanding of data format, lack of data processing knowledge, difficulty in accessing and managing data, and lack of visualization data to understand collected and stored data. Therefore, in this study, we propose a big data collection, storing and visualization platform that can collect big data provided by various public sites using data set URL and API regardless of data format, re-process collected data using XML structure.
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.1
/
pp.57-70
/
2018
The advancement and the spread of information and communication technology (ICT) changes the way we live and act. Computer and ICT devices become smaller and invisible, and they are now virtually everywhere in the world. Many socio-economic activities are now subject to the use of computer and ICT devices although we don't really recognize it. Various socio economic activities supported by digital devices leave digital records, and a myriad of these records becomes what we call'big data'. Big data differ from conventional data we have collected and managed in that it holds more detailed information of socio-economic activities. Thus, they offer not only new insight for our society and but also new opportunity for policy analysis. However, the use of big data requires development of new methods and tools as well as consideration of institutional issues such as privacy. The goals of this research are twofold. Firstly, it aims to understand the opportunities and challenges of using big data for planning support. Big data indeed is a big sum of microscopic and dynamic data, and this challenges conventional analytical methods and planning support tools. Secondly, it seeks to suggest ways of visualizing such spatial big data for planning support. In this regards, this study attempts to develop a dynamic visualization model and conducts an experimental case study with mobile phone big data for the Jeju island. Since the off-the-shelf commercial software for the analysis of spatial big data is not yet commonly available, the roles of open source software and computer programming are important. This research presents a pilot model of dynamic visualization for spatial big data, as well as results from them. Then, the study concludes with future studies and implications to promote the use of spatial big data in urban planning field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.