• Title/Summary/Keyword: 비 이온계 계면 활성제

Search Result 71, Processing Time 0.024 seconds

Surfactant Washing of Organics from a Contaminated Site I. Clean Up of Hydrocarbon Contaminated Soils (Surfactant washing에 의한 토양 내의 유기물 제거에 관한 연구 I. 탄화수소로 오염된 토양의 정화)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.357-364
    • /
    • 1997
  • The objective of this study was to find optimum nonionic surfactants for clean up of soils contaminated by hydrocarbon oils. PIT(phase inversion temperature) measurements in ternary systems containing pure hydrocarbons, pure nonionic surfactants, and water were carried out and interfacial tensions were measured as a function of time for n-hexadecane oil drops brought into contact with various mixtures of nonionic surfactant and water. Batch surfactant washing experiments were performed based on the measurement, results of PIT and interfacial tension and the results showed that maximum removal of n-hexadecane occurred at the PIT of the system. For the $C_{12}E_5(C_{12}H_{25}O(CH_2CH_2O)_5H)$ system, maximum n-hexadecane removal of 73.4% occurred at the PIT of $52^{\circ}C$. In contrast, n-hexadecane removal at $25^{\circ}C$ and at $60^{\circ}C$, each corresponding to the conditions of below PIT and above PIT of the system, was found to be 57.1% and 57.0% respectively. The maximum removal of a hydrocarbon at the PIT of a system, where the hydrophilic and hydrophobic properties are balanced, was found to be due to the existence of high oil solubilization into a middle-phase microemulsion and ultralow interfacial of the order of $10^{-2}$ to $10^{-3}$ dyne/cm between middle-phase microemulsion and excess oil phase.

  • PDF

Effect of Cosurfactant on Microemulsion Formation and Cleaning Efficiency in Systems Containing Alkyl Ethoxylates Nonionic Surfactant, D-Limonene and Water (보조계면활성제 첨가가 Alkyl Ethoxylates계 비이온 계면활성제, D-limonene, 물로 이루어진 시스템에서의 마이크로에멀젼 형성 및 세정력에 미치는 효과)

  • Lee, Jong Gi;Bae, Sang Soo;Cho, In Sik;Park, So Jin;Park, Byeong Deog;Park, Sang Kwon;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.664-671
    • /
    • 2005
  • In this study, the effect of sosurfactant on microemulsion phase behavior was investigated in ternary systems containing alkyl ethoxylates nonionic surfactant, water and d-limonene. The addition of a cosurfactant produced a microemulsion phase over a wide range of temperature and promoted formation of a microemulsion phase at lower temperatures. In particular, small amounts of n-propanol, as a cosurfactant, were found to be the most effective in extending a microemulsion phase region over a wide range of temperature. Temperature sensitivity of a nonionic surfactant system was effectively relieved by addition of the anionic surfactant sodium dodecyl sulfate. And the formation of one phase microemulsion was not affected by pH, hardness concentration and addition of an antioxidation agent. The cleaner candidates were determined from microemulsion phase behavior study, and their cleaning efficiency was tested using a dipping method. All the cleaner candidates selected during this study showed excellent removal efficiency for abietic acid over a temperature range from 30 to $40^{\circ}C$ presumably due to a decrease in interfacial tension.

Toxicity Estimation of Nonionic Surfactants and Their Effect on the Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) (비이온계 계면활성제의 독성 평가 및 Polycyclic Aromatic Hydrocarbons(PAHs) 생분해에 미치는 영향)

  • Park, Jong-Sup;Kim, In S.;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2107-2113
    • /
    • 2000
  • Toxicity estimation of three nonionic surfactants (Brij 30, Tween 80, Triton X-lOO) and their effect on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase and soil slurry phase were investigated. Brij 30 was found to be the most biodegradable among the surfactants tested, and showed no substrate inhibition up to a concentration of 1.5 g/L. It was definitely utilized as a carbon source by the microorganisms. Naphthalene and phenanthrene in the aqueous phase were completely degraded by phenanthrene-acclimated cultures within 60 hours, but a substantial amount of naphthalene was lost due to the volatilization. The limiting step in the soil slurry bioremediation was bioavailablity by the microorganisms in the sand slurry and mass transfer from a solid to aqueous phase in the clay slurry. TOC analysis revealed that most of substrates including surfactant in the reactor were degraded. pH transition indicated that phenanthrene was metabolized into intermediates containing acid function.

  • PDF

Effect of Cosurfactant on Intermediate Phase Formation in Systems Containing Alkyl Ethoxylate Nonionic Surfactant, Water and Lubricant (Alkyl Ethoxylate 비이온 계면활성제, 물과 윤활유를 포함한 시스템에서 보조계면활성제가 중간상 생성에 미치는 영향에 관한 연구)

  • Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.778-784
    • /
    • 2005
  • It has been found that the addition of cosurfactant is necessary in order to expand three phase region containing middle phase microemulsion in ternary systems containing alkyl ethoxylate (AEO) nonionic surfactant, commercial lubricant and water. Phase behavior in the surfactant systems with addition of cosurfactant over a temperature range of 30 to $60^{\circ}C$ showed different trends depending on surfactant, temperature and chain length of alcohol added. For the $C_{12}E_4$ system, addition of n-pentanol and n-hexanol both produced a three phase region over a wide range of temperatures but the middle-phase formed was found to be a $L_3$ or D' phase which would not facilitate solubilization of high molecular weight lubricants. On the other hand, for the $C_{12}E_5$ system, the middle-phase microemulsion was found to be formed with addition of a rather long-chain alcohol such as n-hexanol, n-heptanol, n-octanol, or n-nonanol. The results shown with the addition of cosurfactant was understood in connection with interfacial tension measurements and composition analysis. The inability of the hydrocarbon region of the surfactant films to incorporate the large lubricant molecules and high solubility of a hydrophobic surfactant are thought to be the chief reasons for poor solubilization with D' phase.

Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant (글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lim, JongChoo;Lee, Seul;Kim, ByeongJo;Lee, JongGi;Choi, KyuYong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.376-383
    • /
    • 2011
  • The CMCs of LA and LA3 nonionic surfactants obtained from the reaction between glycidol and lauryl alcohol were found to be $0.97{\times}10^{-3}mol/L$ and $1.02{\times}10^{-3}mol/L$ respectively and the surface tensions for 1 wt% surfactant were 26.99 and 27.48 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer showed that the adsorption rate of surfactant molecules at the interface between the air and the surfactant solution was found to be relatively fast in both surfactant systems, presumably due to the high mobility of surfactant molecules. The contact angles of LA and LA3 nonionic surfactants were 27.8 and $20.9^{\circ}$ respectively and the dynamic interfacial tension measurement by a spinning drop tensiometer showed that interfacial tensions at equilibrium condition in both systems were almost the same. Also both surfactant systems reached equilibrium in 2~3 min. Both surfactant solutions showed high stability when evaluated by conductometric method and the LA nonionic surfactant system provided the higher foam stability than the LA3 nonionic surfactant system. The phase behavior experiments showed a lower phase or oil in water (O/W) microemulsion in equilibrium with an excess oil phase at all temperatures studied. No three-phase region was observed including a middle-phase microemulsion or a lamellar liquid crystalline phase.

Separation of Mixtures for Anionic and Nonionic Surfactants by Thin Layer Chromatography (음이온성 및 비이온성 계면활성제 혼합물의 Thin Layer Chromatography에 의한 분리)

  • Kim, Tae-Seong;Lee, Jae-Duk;Yun, Yeo-Gyung
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.249-255
    • /
    • 1990
  • The conditions for separation and identification of anionic and nonionic surfactants by thin layer chromatography were investigated. Polyoxy alkylene-type nonionic surfactants were identified by the distribution of alkyl chain and alkylene oxide. Various polyoxyethylenated nonyl phenols were easily distinguished by densitometer. Some anionic surfactants were identified by $R_f$ and color, and the mixtures of anionic and nonionic surfactants were separated. Polyoxyethylenated fatty acid was separated into three parts of diester, monoester and polyethylene glycol, respectively, and the mixed ratio was determined by densitomer. All the experiments were carried out in 13-20 minutes, and the length of run was 80mm.

  • PDF

Phase Behavior and Detergency of Methoxy Polyoxyethylene Dodecanoate (Methoxy Polyoxyethylene Dodecanoate의 상거동과 세정성)

  • Kang, Y.S.;Yun, Y.G.;Lee, J.H.;Nam, K.D.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.413-418
    • /
    • 1998
  • Methoxy polyoxyethylene dodecanoates are a kind of nonionic surfactants obtainable from reaction of fatty acid methyl ester with ethylene oxide utilizing a solid catalyst. Methoxy polyoxyethylene dodecanoates have economical advantage compared with polyoxyethylene dodecyl ethers using fatty alcohol. In this work, the solubilizing capacity concerned with phase behavior of ternary systems composed of nonionic surfactant/water/oil, interfacial tension and detergency at the phase inversion temperature(PIT) were investigated and compared with those of polyoxyethylene dodecyl ethers in order to confirm the applicability of methoxy polyoxyethylene dodecanoates in the detergents. Methoxy polyoxyethylene dodecanoates showed the solubilizing capacity of 10~18% for hexadecane which were about 6% higher than polyoxyethylene dodecyl ethers. At the PIT condition, methoxy polyoxyethylene dodecanoates' interfacial tension were 0.0124~0.0176 dyne/cm while polyoxyethylene dodecyl ethers have the value of 0.013~0.0163 dyne/cm and methoxy polyoxyethylene dodecanoates showed higher detergency of 82.1~83.2% than polyoxyethylene dodecyl ethers of 76.5~77.3%. The good detergency performance of methoxy polyoxyethylene dodecanoates would be due to the higher oil solubilizing power and lower interfacial tension than polyoxyethylene dodecyl ethers at the PIT condition.

  • PDF

Microemulsions in Supercritical Carbon Dioxide Utilizing Nonionic Surfactants (초임계 이산화탄소내 비이온성 계면활성제를 이용한 마이크로에멀젼 형성연구)

  • Koh, Moonsung;Yoo, Jaeryong;Park, Kwangheon;Kim, Hongdoo;Kim, Hakwon
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.221-228
    • /
    • 2004
  • Ethoxylated Nonyl Phenol Series (NP-series), nonionic surfactants, were applied for forming microemulsions in supercritical $CO_2$. Measurement results of the solubility in supercritical $CO_2$ are in the following; NP-series were high soluble in carbon dioxide in spite of the fact that those were not $CO_2$-philic surfactants traditionally well known. Water in $CO_2$ microemulsions were also formed stably. A complexation of hydrophilic lengths for $CO_2$-philic parts of NP-Series surfactants was optimized by NP-4 surfactant(N=4) for forming the microemulsions through the experiments. Formation of microemulsions was confirmed by measuring the UV-Visible spectrum through a spectroscopic method and existence of water in the microemulsions was confirmed as well. In order to apply it for a metal surface treatment or electroplating, an experiment for forming acid(organic, inorganic) solution in $CO_2$ microemulsions was carried out. Ionic surfactant in the reaction to an acid solution became unstable to form microemulsions, however, nonionic surfactant was formed stably in the reaction. Results of the study will be utilized for expanding the application scope of supercritical $CO_2$ which is an environmental-friendly solvent.

  • PDF

A Study on the Application of Soil Washing Technology for HOCs-Contaminated Soil Using Mixed Surfactants (소수성 유기오염물질로 오염된 토양에 대한 혼합 계면활성제를 이용한 토양세척기법의 적용성 연구)

  • Choi, Sang-Il;Lee, Jai-Young;Jang, Min
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • A series of batch tests were conducted to evaluate the design parameters for the application of soil washing techniques to the hydrophobic organic compounds (HOCs)-contaminated soil using mixed surfactants. Because the mixed surfactants form different structures of molecular aggregates from single surfactant, they were applied to improve the washing efficiency. Kinds of surfactants added, mixing ratio, and total concentration of mixed surfactants were evaluated. The uncontaminated soil was obtained from a country hill near Nock-Chun Station in Seoul. The portion of soil passing #4 (4.75 mm) sieve was used. The pH, organic contents and cation exchange capacity were 4.4, 1.6% and 4.08 meq/100 g, respectively The soil was artificially contaminated by n-dodecane. The 5% solution of OA-5 and OA-14 (1:1) showed 86% washing efficency. The 4% solution of SDS and OA-5 (1:1) showed 95% washing efficiency.

  • PDF

Studies on the Dynamic Surface Tension of GL12 and Anionic Mixtures (N-Dodecanoyl, N-Methyl Glucamine(GL 12)과 음이온 계면활성제 혼합물의 Dynamic Surface Tension에 관한 연구)

  • Ahn, Ho-Jeong;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.101-108
    • /
    • 1996
  • The dynamic surface tension of GL12 (easily biodegradable nonionic surfactant and mild to skin), LAS and SLES aqueous solutions and that of mixed surfactant systems were measured by the maximum bubble pressure method at different mixing ratios. The effects of various salt such as NaCl, CsCl and urea on the dynamic surface tension of mixed surfactant systems were also studied. The dynamic surface tension of GL12 was not influenced by the presence of salts. On the contrary, the dynamic surface tensions of anionic surfactants (LAS and SLES) were significantly affected by the salts. In the mixed surfactant systems, the effect of salt increased as the composition of anionic LAS or SLES increased in the GL12/LAS and GL12/SLES mixtures.

  • PDF