• Title/Summary/Keyword: 비행 제어

Search Result 882, Processing Time 0.034 seconds

A Study on Flight Characteristics and Flight Control Methodology for a Wing In Ground Effect Vehicle (지면효과익기의 비행특성 해석 및 비행제어 방식에 관한 연구)

  • Song, Yongkyu
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • In this study an analysis on flight characteristics and flight control methods for a wing in ground effect vehicle is made. In order to closely view its nonlinearity a few limit cycles are examined and related to the characteristics of the linearized systems. Several flight control methods are compared for the cruise mode with initial height error and command tracking mode of ascending, cruise, and descending. In comparison performance and the implementation aspects are examined. For the possible control inputs, combinations of elevator, thrust, and flap are considered and LQR-based output command tracking scheme is applied in the control system design.

  • PDF

Second Stage Attitude Control Results of KSLV-I Third Flight Test (나로호 3차 비행시험 2단 자세제어 결과)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.189-199
    • /
    • 2013
  • This paper summarizes results of second stage attitude control of KSLV-I third flight test. The results show that three axes attitude control at coasting phases of KSLV-I was successfully accomplished by the reaction control system, and pitch and yaw attitude control at thrusting phase where second stage kick motor burns was also normally accomplished by using the thrust vector control system. It is verified that the second stage controller performed successfully for all flight phases regardless of some disturbances due to mass center offset, slag effects, and residual thrust of kick motor. These results may provide an important basis in enhancing domestic technology level of attitude control of launch vehicle.

Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet (Synthetic jet을 이용한 스마트 무인기(SUAV) 유동제어 Part 2 : 천이 비행 모드에서 synthetic jet을 이용한 유동제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • In order to reduce the download around the Smart UAV(SUAV) at Transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. Based on the results of part 1 of the present work, synthetic jet is located at 0.01c, $0.95c_{flap}$ and it is operated with the non-dimensional frequency of 0.5, 5 to control the leading edge and trailing edge separation. Consequently, download is substantially reduced compared to with no control case at transition mode using leading edge jet only. The present results show that the overall flight performance and stability of the SUAV can be remarkably improved by applying the active flow control strategy based on synthetic jet.

Physics-based Simulation of a VTVL Vehicle for 2D Games (2D 게임을 위한 수직 이착륙 비행체의 물리 기반 시뮬레이션)

  • Moon, Sukjin;Choi, Min Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • In this paper, we consider a physics-based 2D flight simulation game where users can easily control realistic flight of a vehicle equipped with two thrusters that allow vertical takeoff and vertical landing. The flight vehicle can be manipulated by directly controlling the thrusting force at each thruster using a pair of analog input devices such as joysticks. However, it might require too much practice to make aerobatic flying solely with this kind of control. We propose a set of fly-by-wire methods that provide easy-to-use, intuitive control of a VTVL vehicle. Based on PD controllers, the proposed methods allow users to specify the velocity or position of the vehicle directly. Furthermore, they are easy to understand and simple to implement. We expect that the proposed vehicle model and control mechanism could be used in various 2D games.

Design for Flight Control System Focused on Reliability (신뢰성 목표를 위한 비행제어 시스템 설계)

  • Kim, Sung-Su;Park, Choon-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.33-40
    • /
    • 2005
  • The reliability of flight control system(FCS) for Unmanned Air Vehicle(UAV) is underestimated because of the design restrictions such as small size, low cost and light weight. However because the failure of FCS may cause the loss of aircraft, the reliability of FCS must be analysed and validated whether it meet the reliability requirements in design phase.In this paper the failure rate of subsystems was divided with its function based on the design experience of FCS. The redundancy models which satisfy the system reliability requirements were suggested. These results may be utilized in the hardware design of FCS.

A Research on the Dynamic Pressure Estimation for the Control Law Design of High Speed Vehicle (초고속 비행체 제어기법 설계를 위한 비행체 동압 추정 기법 연구)

  • Park, Jungwoo;Kim, IkSoo;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.953-956
    • /
    • 2017
  • This paper introduces general applications of vehicle's dynamic pressure information which is estimated during the flight. And a method to estimate the dynamic pressure for a high speed vehicle is suggested to sustain reliability of the flight under a high estimation accuracy of the information. The presented method is straightforward with simple relations of the compressible flow but is a still merited idea employed for the high speed vehicle control scheme with great accuracy.

  • PDF

A Design of Helicopter Control Law Rapid Prototyping Process Using HETLAS (HETLAS를 활용한 헬리콥터 비행제어 법칙 Rapid Prototyping 프로세스 설계)

  • Yang, Chang Deok;Jung, Ho-Che;Kim, Chang-Joo;Kim, Chong-Sup;Kim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.731-738
    • /
    • 2015
  • The rapid prototyping process and development tool which enable the control law evaluation efficiently are needed to minimize the development cycle, cost and risk of aircraft flight control system. This paper describes a development process that integrates the designed control law into HETLAS to evaluate simulation effectively using nonlinear mathematical models. The desktop engineering simulator was developed using HETLAS for the piloted simulation evaluation of a various control modes and the procedure was developed, which quickly integrates the HETLAS into HQS(Handling Quality Simulator) and HILS(Hardware In the Loop Simulation) environments. This paper presents a rapid prototyping process using HETLAS that significantly shortens the integration process of the control law into the nonlinear math model, HETLAS, and allows the control law designs to be quickly tested in the piloted simulation and HILS environments.

Research on Dual Flight Control System for High Altitude Long Endurance UAV (고고도 장기체공 무인기의 비행제어시스템 이중화에 대한 연구)

  • An, Seok-Min;Kim, Seong-Uk;Yu, Hyeok
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.55-58
    • /
    • 2015
  • 고고도 장기체공 무인기는 일반적인 무인기와 달리 고고도에서의 환경과 장시간의 체공에 따른 위험도가 높을 수밖에 없다. 따라서 신뢰도를 높이기 위한 다양한 방안을 강구해야 한다. 가장 중요한 요소 중 하나가 비행제어시스템이며, 본 논문에서는 비행제어시스템의 이중화에 따른 설계결과와 비행시험결과를 기술하였다.

  • PDF

Development of Drone Cluster Flight Simulation using Gazebo (Gazebo를 이용한 드론 군집 비행 시뮬레이션 개발)

  • Choi, Hyo Hyun;Kim, Hyung Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.205-206
    • /
    • 2021
  • 본 논문에서는 ROS를 이용한 드론 군집 비행 시뮬레이션을 구현한 결과를 보인다. ROS 환경에서 Gazebo 시뮬레이션 툴과 ArduPilot을 이용하여 모델링된 드론을 Gazebo에 적용한 뒤, 프로그래밍된 명령을 적용하여 각각의 드론이 명령에 따라 제어되는 군집비행을 보인다. 시뮬레이션은 12대의 드론이 각각 cpp 파일에 따라 제어되도록 설정한 launch 파일을 roslaunch하여 설정한 모든 드론이 Gazebo에서 각각 제어되는 군집비행 시뮬레이션을 구현하였다.

  • PDF

UAV Navigation Sensor Integrated Flight Control System Design (무인항공기용 항법센서 통합 비행제어 시스템 설계)

  • Lee, Dong-Hyuk;Jung, Tae-Won;Lee, Ki-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1928-1929
    • /
    • 2011
  • 무인항공기란(Unmanned Aerial Vehicle : UAV)란 일반적으로 조종사 없이 사전에 입력된 프로그램에 따라 또는 비행체 스스로 주위환경(장애물, 항로)을 인식하고 판단하여 자율 비행(Autonomous Flying)하는 비행체를 말한다. 본 논문에서는 항법센서(Attitude Heading Referance System: AHRS)를 비행제어 시스템과 통합한 시스템에 관하여 다루었다.

  • PDF