• Title/Summary/Keyword: 비행체 구조시험(airframe structural test)

Search Result 5, Processing Time 0.02 seconds

비행체 구조시험 장비의 교정 확인 방법 개발

  • Chae, Dong-Chul;Kim, Sung-Chan;Hwang, Gui-Chul;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.21-26
    • /
    • 2005
  • In airframe structural tests, a control system which has many control channels and a data acquisition system which has many data acquisition channels are used. The more it is used many channels in airframe structural test, the more hardware resources are added in test system. Before test load is applied in test article, test engineer must check test system and components. Therefore, many problems which be likely to happen to system can be minimized. The checking method of test system and components is calibration verification. In this paper, it is described that calibration verification concept and method in relation to airframe structural test controller components.(MTS Aero90 Multifunction Input Output Processor and 497.22 Dual DC Conditioner)

  • PDF

전기체 정적시험 치구설계 기술보고서

  • Kim, Sung-Chan;Shin, Jeong-Woo;Shim, Jae-Yeul;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.32-44
    • /
    • 2002
  • This paper contains the information that describes the test fixture design and technology for full-scale airframe static test. Obtained technologies consist of determination of design load for test fixture, design technique for loading system, counterbalance system, positioning system of test article, test equipment and overload protection method. Full-scale airframe static test of advanced jet trainer was implemented using test fixture which are applied these technique.

  • PDF

A Study on the Test Load Simulation Technique for T-50 Full Scale Durability Test (T-50 전기체 내구성시험 시험하중 설계기술 연구)

  • Jung, Jae-Kwon;Lee, Kee-Bhum;Yang, Myung-Seog;Shul, Chang-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2004
  • The general requirements to achieve the structural integrity of the airframe are described in the military specification, MIL-HDBK-1530. One of these requirements is the durability and damage tolerance of the airframe, which should be shown through the analysis and test based on the related specifications. This paper describes the full scale durability test load simulation to evaluate the structural safety and durability of the advanced trainer, T-50. The test load simulation was performed according to the procedure in the military specification and the KAF contract requirements. The durability test design technique which involve the floating test set-up, the optimal test load simulation method, and the 6-DOF test article balance method to secure the real flight conditions as many as possible. It was confirmed that this method will be available in a similar full-scale airframe structural test in future.

The Study on Structural Strength Test Technique for Cylindrical Supersonic Vehicle Subjected to Severe Heating Environment (원통형 초음속 비행체 내열구조시험 기법 연구)

  • Lee, Kyung-Yong;Kim, Jong-Hwan;Lee, Kee-Bhum;Jung, Jae-Kwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.83-91
    • /
    • 2005
  • This paper describes the structural strength test technique and the results for cylindrical supersonic vehicle subjected to both aerodynamic load and thermal load. The special positioning system using spring links was designed to float, support and restrain the test airframe during the test and the down-time. The hydraulic system and the electric heating system were utilized to apply the aerodynamic load and the thermal load to the test airframe together. Particularly, several hundreds of infrared quartz lamps were used for the heating system, and the thermal test conditions were successfully simulated. The test results showed that this kind of high temperature test is adequate to verify the structure integrity and produce useful engineering data which is necessary for the possible structural modification under thermal environments.

Full Scale Durability Test of Basic Trainer (기본 훈련기 실기체 내구성시험)

  • Joo, Young-Sik;Kim, Min-Sung;Park, Byung-Hoon;Shul, Chang-Won;Kim, Ho-Yeon;Jung, Jae-Kwon;Jeong, Byeong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • The general requirements to achieve the structural integrity of the airframe are described in the military specification, MIL-STD-1530A. One of these requirements is the durability and damage tolerance of the airframe, which should be shown through the analysis and test based on the related specifications. This paper introduces the full scale durability test to evaluate the structural safety and durability of the basic trainer, KT-1. The test was performed according to the procedure in the military specification. The flight by flight load spectrum was developed by KT-1 fatigue load criteria and used for the durability test. The durability test had been performed for 4 service lives and was completed successfully. Therefore, it was shown that KT-1 airframe satisfied the durability requirements.