• Title/Summary/Keyword: 비행의 자유

Search Result 145, Processing Time 0.028 seconds

Form Definition of Free Form Structure (자유형상 구조물의 형상정의)

  • 박재섭;우일국;김수영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.43-47
    • /
    • 1991
  • For the structural analysis of optimum form decision of 3-D free fort structure such as ship, plane, automobile, definition of versatile forms and comparision between them satisfying the design criterion, is essential. In this paper, three dimensional free-form structure and it's variation are defined and attempts were made to obtain geometric form information for structural analysis. The validity of the method ks been tested for a particular free-form model selected.

  • PDF

Form Design of Free Form Structure (자유형상 구조물의 형상 설계)

  • 김수영;박재섭
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.79-85
    • /
    • 1992
  • For the structural analysis of optimum form decision of 3-D free form structure such as ship, plane, automobile, definition of versatile forms and comparision between them satisfying the design criterion, is essential. In this paper, 3-D free form structure and it's variation are defined and attempts were made to obtain geometric form information for structural analysis. The validity of the method has been tested for a particular free model selected.

  • PDF

우주 간섭계 구현을 위한 인공위성 편대비행의 최적 궤도 설계

  • 유성문;박상영;최규홍
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.60-60
    • /
    • 2004
  • 인공위성 편대 비행은 하나의 대형 위성을 쏘아 올리는 것보다 비용면에서 절약효과를 볼 수 있을 뿐만 아니라 우주 공간상에서 간섭계의 구현이 가능하다는 장점이 있다. 우주 간섭계의 구현은 위성 편대의 재배치 기동(Reconfiguration maneuver)을 통하여, 원하는 관측대상으로의 지향을 자유로이 할 수 있으며, 기저선의 크기에 제약을 받지 않으므로 간섭계의 효과를 극대화시키는 것이 가능하다. (중략)

  • PDF

Development and Validation of an Improved 5-DOF Aircraft Dynamic Model for Air Traffic Control Simulation (항공교통관제 시뮬레이션을 위한 개선된 5 자유도 항공기 운동 모델 개발 및 검증방안 연구)

  • Kang, Jisoo;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.387-393
    • /
    • 2016
  • To perform realistic air traffic control (ATC) simulation in various air traffic situations, an aircraft dynamic model that is accurate and efficient is required. In this research, an improved five degree of freedom (5-DOF) dynamic model with feedback control and guidance law is developed, which utilizes selected performance data and operational specifications from the base of aircraft data (BADA) and estimations using aircraft design techniques to improve the simulation fidelity. In addition, takeoff weight is estimated based on the aircraft type and flight plan to improve simulation accuracy. The dynamic model is validated by comparing the simulation results with recorded flight trajectories. An ATC simulation system using this 5-DOF model can be used for various ATC related research.

A Study for Avoidance Alarm Algorithm with ADS-B Message (ADS-B 메시지를 이용한 충돌 경보 알고리즘에 관한 연구)

  • Ju, Yo-Han;Ku, SungKwan;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.379-388
    • /
    • 2015
  • In the end of 1990's, future free flight technology had been developed and tested in America and government established the plan for free flight until 2017. Aircraft separation assurance must be secured essentially to avoid collision between aircrafts before Free Flight comes true. Now, Civil aircraft has rules about avoidance activity with traffic collision avoidance system (TCAS) but it can't apply to light aircraft. So there is a need about alternative method to apply light-aircraft because it has space and price problem to use TCAS. In this paper, TCAS algorithm has been modified and verified by simulating with LABVIEW program under ADS-B condition to get miniaturization and weight lighting cheaply. By simulating, collision alert algorithm is analyzed and verified with collision situation proposed by ICAO, and 100% checked for performing the alert announciation on all cases by TCAS standards.

Analysis of Handling Qualities for Smart Unmanned Aerial Vehicle in Helicopter Flight Mode (스마트 무인기의 회전익 모드 비행성 분석)

  • Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2005
  • The aim of this paper is to analyze handling qualities of tiltrotor aircraft(TR-S4) in helicopter flight mode including hovering and forward flight. Analysis of handling qualities is composed of aircraft response to control inputs that effect on stability and controllability. In short term response analysis, bandwidth is the critical parameter for small amplitude motions since it relates to the ability of a pilot to crisply start and stop maneuver. The handling qualities of TR-S4 in helicopter mode are analyzed with a SAS and an attitude controller and are satisfied level 1 in almost criteria with simulation of TR-S4 6-DOF nonlinear model.

  • PDF

A Study on the Flight Initiation Wind Speed of Wind-Borne Debris (강풍에 의한 비산물의 비행 시작 풍속에 관한 연구)

  • Jeong, Houigab;Lee, Seungho;Park, Junhee;Kwon, Soon-duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.105-110
    • /
    • 2020
  • This study provides a method and data for predicting the flight initiation wind speed of wind-borne debris. From the force equilibrium acting on debris including aerodynamic and inertia forces, the equation for predicting the flight initiation wind speeds are presented. Wind tunnel tests were carried out to provide necessary aerodynamic data in the equation for the debris with various aspect ratios. The proposed equation for flight initiation wind speeds was validated from free flying tests in the wind tunnel. The flights of debris were mostly initiated by slip when width to thickness was less than 10, otherwise overturning were dominant. The actual flight initiation speeds were lower than that of the computed ones. The surface boundary layer flow and the gap between the debris and surface might affect the prediction error.

Trouble Shooting for Fully Automatic Flight Test of Small Scaled Tiltrotor UAV (축소형 틸트로터 무인기의 전자동 비행시험을 위한 문제해결과정)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Koo, Sam-Ok;Lee, Jang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The ground integration test of Smart UAV has been performed according to the flight test plan. The flight test of full scaled model will be performed followed by 4 DOF ground rig test and a tethered hover test. Smart UAV is the first indigenous tiltrotor aircraft which can fly with fast cruise speed and take off or land vertically. In order to prove the flight control law of Smart UAV, the 40% scaled airplane was developed and have been tested. During flight test of small scaled model, many unique and unexpected problems occurred. After clearing these problems, fully automatic flight test was performed successfully. The experiences about many trouble shooting and resolving the problems would be basic material to avoid the unexpected but similar flight test problems hidden behind of the full scaled Smart UAV. This paper presents the detailed procedures of trouble shootings to solve the unique problems which occurred during the flight test of small scaled tiltrotor UAV.

  • PDF

Application of Wind Tunnel Testing on the Dynamic Stability Derivatives of a Rocket Model (로켓 모델의 동안정미계수에 대한 풍동시험의 적용)

  • Cho, Hwan-Kee;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.888-893
    • /
    • 2012
  • This paper described the wind tunnel testing apparatus and technique to acquire the dynamic stability derivatives of large slenderness ratio air vehicle such as the guided missiles or rockets. There have been few difficulties in conducting wind tunnel testing for slender long rocket due to the size limitation of the test section size and the installation of oscillation equipments. In this study, the dynamic stability balance was used as the wind tunnel technique for obtaining the dynamic stability derivatives. Through the wind tunnel testing, the experimental apparatus for slender air vehicle's oscillation is established. The measured data showed that it is possible to acquire the dynamic stability derivatives of large slenderness ratio rocket, properly.