• Title/Summary/Keyword: 비행역학

Search Result 234, Processing Time 0.021 seconds

Kinetic Analysis of the Salto Side-Ward Tucked on the Balance Beam (평균대 옆공중돌기 동작의 운동역학적 분석)

  • Yeo, Hong-Chal;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.61-69
    • /
    • 2008
  • The purpose of this study is to examine the success or failure on the balance beam in element group requirements posture which is bending salto side-ward tucked through kinetic analysis. The national team players were participated. The goal was to present training methods to coaches and athletes so as to provide scientifically useful information. The results from this study were summarized as below. When the performance was successful, the features of the body's center of gravity during the side somersault motion showed to spread from the center of the balance beam and the center of the gravity moved to the direction of the body's rotation. In the spring sections - event2 and 3, when the performance was successful, up/down fluctuation became more wider and increased air time. It supported the result that the projecting variable was higher than in failure trial. In addition, the right side hip joint angles and speed, and angular velocity as jumping up for a leap were larger than in failure trial. Those variables showed the optimal conditions for a leap. By increasing the speed of the upper limb from the shoulder and the speed of the shoulder joint angular velocity, the momentum was increased. Especially the right side shoulder joint angular velocity increased dramatically because the right leg was held. As to the side somersault motion, the angular momentum of successful trial with respect to x-axis was bigger than failed trial. It indicated that the increasing angular momentum with respect to x-axis was an important factor in flying motion. Besides, as to side somersault, the appropriate proportion of angular momentum with respect to y-axis and z-axis was a key to successful trails.

Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations (발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증)

  • Lee, Byoung-Sun;Kim, In-Jun;Lee, Soo-Jeon;Hwang, Yoo-La;Jung, Won-Chan;Kim, Jae-Hoon;Kim, Hae-Yeon;Lee, Hoon-Hee;Lee, Sang-Cherl;Cho, Young-Min;Kim, Bang-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • COMS(Chollian) satellite which was launched on June 26, 2010 has three payloads for Ka-band communications, geostationary ocean color imaging and meteorological imaging. In order to make efficient use of the geostationary satellite, a concept of mission operations has been considered from the beginning of the satellite ground control system development. COMS satellite mission operations are classified by daily, weekly, monthly, and seasonal operations. Daily satellite operations include mission planning, command planning and transmission, telemetry processing and analysis, ranging and orbit determination, ephemeris and event prediction, and wheel off-loading set point parameter calculation. As a weekly operation, North-South station keeping maneuver and East-West station keeping maneuver should be performed on Tuesday and Thursday, respectively. Spacecraft oscillator updating parameter should be calculated and uploaded once a month. Eclipse operations should be performed during a vernal equinox and autumnal equinox season. In this paper, operational validations of the major functions in COMS SGCS are presented for the first three month of in-orbit test operations. All of the major functions have been successfully verified and the COMS SGCS will be used for the mission operations of the COMS satellite for 7 years of mission life time and even more.

The Construction Method for Virtual Drone System (가상 드론 시뮬레이터 구축을 위한 시스템 구성)

  • Lee, Taek Hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.124-131
    • /
    • 2017
  • Recently, drone is extending its range of usability. For example, the delivery, agriculture, industry, and entertainment area take advantage of drone mobilities. To control real drones, it needs huge amount of drone control training steps. However, it is risky; falling down, missing, destroying. The virtual drone system can avoid such risks. We reason that what kinds of technologies are required for building the virtual drone system. First, it needs that the virtual drone authoring tool that can assemble drones with the physical restriction in the virtual environment. We suggest that the drone assembly method that can fulfill physical restrictions in the virtual environment. Next, we introduce the virtual drone simulator that can simulate the assembled drone moves physically right in the virtual environment. The simulator produces a high quality rendering results more than 60 frames per second. In addition, we develop the physics engine based on SILS(Software in the loop simulation) framework to perform more realistic drone movement. Last, we suggest the virtual drone controller that can interact with real drone controllers which are commonly used to control real drones. Our virtual drone system earns 7.64/10.0 user satisfaction points on human test: the test is done by one hundred persons.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

COMPARISON OF COMMERCIAL AND OPEN SOURCE CFD CODES FOR AERODYNAMIC ANALYSIS OF FLIGHT VEHICLES AT LOW SPEEDS (저속 비행체 공력해석을 위한 상용 및 오픈 소스 CFD 코드 비교)

  • Park, D.H.;Kim, C.W.;Lee, Y.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.70-80
    • /
    • 2016
  • The comparison of two commercial codes(FLUENT and STAR-CCM+) and an open-source code(OpenFOAM) are carried out for the aerodynamic analysis of flight vehicles at low speeds. Tailless blended-wing-body UCAV, main wing and propeller of HALE UAV(EAV-3) are chosen as geometries for the investigation. Using the same mesh, incompressible flow simulations are carried out and the results from three different codes are compared. In the linear region, the maximum difference of lift and drag coefficients of UCAV are found to be less than 2% and 5 counts, respectively and shows good agreement with wind tunnel test data. In a stall region, however, the reliability of RANS simulation is found to become poor and the uncertainty according to code also increases. The effect of turbulence models and meshes generated from different tools are also examined. The transition model yields better results in terms of drag which are much closer to the test data. The pitching moment is confirmed to be sensitive to the existence and the location of transition. For the case of EAV-3 wing, the difference of results with ${\kappa}-{\omega}$ SST model is increased when Reynolds number becomes low. The results for the propeller show good agreement within 1% difference of thrust. The reliability and uncertainty of three codes is found to be reasonable for the purpose of engineering use. However, the physical validity and reliability of results seem to be carefully examined when ${\kappa}-{\omega}$ SST model is used for aerodynamic simulation at low speeds or low Reynolds number conditions.

A Study on the Low Vibration Design of Paddle Type Composite Rotor Blade for Helicopter (Paddle형 복합재료 헬리콥터 로터 블레이드 저진동 설계 기술 연구)

  • Kim, Deok Gwan;Ju, Jin;Lee, Myeong Gyu;Hong, Dan Bi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.99-104
    • /
    • 2003
  • This paper described the general dynamic point for rotor design and the design procedure of low vibration blade. Generally, rotor rotating natural frequencies are determined to minimize hub loads, blade vibration and to suppress ground resonance at rotor design stage. First, through rotor frequency diagram, natural frequencies must be far away from resonance point and rotating loads generated from blade can be transformed to non-rotating load to predict fuselage vibration. Vibration level was predicted at each forward flight condition by calculating cockpit's vertical acceleration transferred from non-rotating hub load assuming a fuselage as a rigid body. This design method is applied to design current Next-generation Rotor System Blade(NRSB) and will be applied to New Rotor which will be developed Further.

Numerical Investigation on Aerodynamic Characteristics of Kline-Fogleman Airfoil at Low Reynolds Numbers (Kline-Fogleman Airfoil의 저 레이놀즈수 공력특성 연구)

  • Roh, Nahyeon;Son, Chankyu;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • In this study, aerodynamic characteristics of Kline-Fogleman airfoils are numerically investigatied which has been widely used in remote control aircraft operating at low Reynolds numbers. The comparison of aerodynamic characteristics was conducted between NACA4415 and Kline-Fogleman airfoil based on NACA4415. ANSYS Fluent was employed with the incompressible assumption and $k-{\omega}$ SST turbulence model. It was found that lift coefficient was significantly enhanced in the range of Reynolds number from $3{\times}10^3$ to $3{\times}10^6$. Especially in the region of Reynolds number below $2.4{\times}10^5$, the lift-to-drag-ratio was improved by 26% using the Kline-Folgeman airfoil compared with NACA4415 airfoil.

Computational Investigations of Adverse Effects of Deploying Spoilers on Airfoil Aerodynamic Characteristics (스포일러 동적 작동에 따른 에어포일 공력특성 역전현상 연구)

  • Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.335-342
    • /
    • 2020
  • Tailless aircraft designed for stealth efficiency uses spoilers instead of rudders for the directional control. When the spoiler is rapidly deployed, highly nonlinear and unsteady aerodynamic characteristics can be generated, resulting in adverse effects on aircraft flight performance. This paper investigates the aerodynamic characteristics of an airfoil with moving spoiler using dynamic mesh CFD technique. The effects of spoiler operation speed, mounting location, and deployment scheduling are analyzed to reduce the adverse effects of the spoiler's dynamic operation. The results shows that the adverse effects of dynamic spoiler can be reduced by appropriate selection of the spoiler mounting location and deployment scheduling.

Design and Test of an Assembly of Air Intake and Variable Geometry Inertial Separator for a Turboprop Aircraft (터보프롭 항공기용 흡입구 덕트 및 가변형 관성분리기 조립체 설계 및 시험)

  • Kim, Woncheol;Oh, Seonghwan;Lee, Sanghyo;Park, Jonghwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.714-719
    • /
    • 2013
  • A turboprop aircraft for this study is required to operate at icing condition in order that it performs its given mission. So an air intake system of the turboprop aircraft should be designed and verified not only to provide the maximum possible total pressure at engine inlet at normal flight condition, but also to include an inertial separator which protects Foreign Object Debris (FOD) like ice or snow at icing condition from entering into the engine inlet screen which can cause or lead an catastrophic engine failure like engine flame-out or severe damage. So an air intake assembly incorporating a variable geometry inertial separator has been designed and then CFD/structural analysis for the assembly was performed to see its design results. Then 35% scaled model of the air intake assembly was manufactured and wind tunnel test was done. This paper describes the detailed design results for the aerodynamic design, analysis and wind tunnel testing during the development process of the air intake assembly.

Numerical Study on the Power-on Effect of a Pusher-propeller Aircraft using CFD (CFD를 이용한 추진식 프로펠러 항공기의 Power-on 효과 해석)

  • Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • In the case of a propeller-driven aircraft, power-on effect generated by the propeller has a strong influence on the performance and the stability of an aircraft directly and indirectly. A numerical study on the power-on effect has been performed using the CFD based on the multiple reference frame and sliding mesh model. The power-on effect increases the overall lift and the maximum lift of the aircraft. In addition to lift increment, power-on effect delays the stall of the aircraft. On the other hand, the power-on effect increases the drag significantly and consequently decreases the lift-to-drag ratio of the aircraft. Furthermore, the power-on effect decreases the nose-down pitching moment and consequently decreases the longitudinal static stability of the aircraft. It is expected that the analysis results presented and discussed in this report will be used as an important material for analyzing the aircraft performance and stability and will contribute the development of the propeller-driven aircraft with the pusher propeller.