• Title/Summary/Keyword: 비행시차

Search Result 8, Processing Time 0.024 seconds

Jet Lag and Circadian Rhythms (비행시차와 일중리듬)

  • Kim, Leen
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.1
    • /
    • pp.57-65
    • /
    • 1997
  • As jet lag of modern travel continues to spread, there has been an exponential growth in popular explanations of jet lag and recommendations for curing it. Some of this attention are misdirected, and many of those suggested solutions are misinformed. The author reviewed the basic science of jet lag and its practical outcome. The jet lag symptoms stemed from several factors, including high-altitude flying, lag effect, and sleep loss before departure and on the aircraft, especially during night flight. Jet lag has three major components; including external de synchronization, internal desynchronization, and sleep loss. Although external de synchronization is the major culprit, it is not at all uncommon for travelers to experience difficulty falling asleep or remaining asleep because of gastrointestinal distress, uncooperative bladders, or nagging headaches. Such unwanted intrusions most likely to reflect the general influence of internal desynchronization. From the free-running subjects, the data has revealed that sleep tendency, sleepiness, the spontaneous duration of sleep, and REM sleep propensity, each varied markedly with the endogenous circadian phase of the temperature cycle, despite the facts that the average period of the sleep-wake cycle is different from that of the temperature cycle under these conditions. However, whereas the first ocurrence of slow wave sleep is usually associated with a fall in temperature, the amount of SWS is determined primarily by the length of prior wakefulness and not by circadian phase. Another factor to be considered for flight in either direction is the amount of prior sleep loss or time awake. An increase in sleep loss or time awake would be expected to reduce initial sleep latency and enhance the amount of SWS. By combining what we now know about the circadian characteristics of sleep and homeostatic process, many of the diverse findings about sleep after transmeridian flight can be explained. The severity of jet lag is directly related to two major variables that determine the reaction of the circadian system to any transmeridian flight, eg., the direction of flight, and the number of time zones crossed. Remaining factor is individual differences in resynchmization. After a long flight, the circadian timing system and homeostatic process can combine with each other to produce a considerable reduction in well-being. The author suggested that by being exposed to local zeit-gebers and by being awake sufficient to get sleep until the night, sleep improves rapidly with resynchronization following time zone change.

  • PDF

The Changes of Sleep-Wake Cycle from Jet-Lag by Age (연령에 따른 비행시차 후의 수면-각성주기 변화)

  • Kim, Leen;Lee, Seung-Hwan;Suh, Kwang-Yoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.3 no.2
    • /
    • pp.18-31
    • /
    • 1996
  • Jet-lag can be defined as the cumulative physiological and psychological effects of rapid air travel across multiple time zones. Many reports have suggested that age-related changes in sleep reflect fundamental changes in the circadian system and in significant declines in slow wave sleep. Jet lag is a dramatic situation in which the changes of the phase of circadian process and homeostatic process of sleep occur. Thus the authors evaluatead the changes of sleep-wake cycle from jet lag by age. Thirty-eight healthy travellers were studied for 3 days before and 7 days after jet-flights across seven to ten time zone. They were aged 19-70, They trareled eastbound, Seoul to North America (USA, Canada). Sleep onset time, wake-up time, sleep latency, awakening frequency on night sleep, awakening duration on night sleep, sleepiness at wake-up and nap length were evaluated. Our results suggest that by the 7 to 10 time zone shift, the old age group was significantly influenced in sleep-wake cycles. The date on which subjective physical condition was recovered was $6.23{\pm}83$ day after arrivals for old age group, while for young and middle age group, $4.46{\pm}1.50$ day and $4.83{\pm}1.52$ day, respectively. In old age group, sleep onset time was later than baselines and could not recover untill 7th day. But in other groups, the recovery was within 5th day. Nap dura fion was longer in old age group through jet lag than younger age group. In other parameters, there was no definite difference among three age groups. Our results suggested that the old age was significantly influenced by the disharmony between internal body clock and sleep-wake cycle needed at the travel site. Thus we proved that recovery ability from jet lag was age-dependent as well as travelling direction-dependent. To demonstrate more definite evidence, EEG monitoring and staging of sleep were funthun encouraged.

  • PDF

The Changes of Traveller's Sleep-Wake Cycles by Jet Lag (비행시차(jet lag)에 의한 여행객의 수면-각성 주기의 변화)

  • Lee, Seung-Hwan;Kim, Leen;Sub, Kwang-Yoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.2 no.2
    • /
    • pp.146-155
    • /
    • 1995
  • Jet lag can be defined as the cumulative physiological and psychological effects of rapid air travel across multiple time zone. The consequences of jet lag include fatigue, general malaise, sleep disturbances, and reductions of cognitive and psychomotor performance, all of which have been documented in experimental biological and air crew personnel studies. Thus authors tried to study the jet lag of natural travellers by modified self reporting sleep log. Total 61 healthy travellers was studied for 3 days before and 7 days after jet-flights across seven to ten time zone. The eastbound travelling group was 38 persons, aged 19 -70 and westbound travelling group was 23 persons, aged 13 - 69. Sleep onset time, wake-up time, sleep latency, awakening frequency on night sleep, awakening duration on night sleep, sleepiness at wake-up and nap length were evaluated. Our results suggested that the 7 to 10 time zone shift gave significant influence to traveller's sleep-wake cycles. The date which subjective physical condition was recovered on was $5.16{\pm}1.50$ day after arrivals for eastbound, while for westbound, $4.91{\pm}1.62$ day. In eastbound travelling, sleep onset time became later than baselines and could not recover until 7th day. But in westbound, it became earlier than baseline and could recover until 6th day. The mean score of 24-hour sleepiness was greater in eastboumd than westbound. Therefore the eastbound travelling caused more sleep-wake cycle disturbance and daytime dysfunction than westbound travelling. In other parameters, there was no definite difference between east and westbound. From our results, it was suggested that the symptom severity of jet lag was dependent on the travelling direction. To demonstrate more definite evidence, large sized data collections and comparision by age difference were needed.

  • PDF

The Show up Time in the Development of the Korean Pilots Fatigue Management Program (한국형 운항승무원 피로관리 프로그램의 출두시간에 관한 연구)

  • Lee, Seungyoung;Chung, Seung Sup;Kim, Hyeon Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.280-285
    • /
    • 2021
  • The significance of pilots' fatigue and the attributed risk management had continuously increased over time as the airline industry expanded. Research and legislation efforts associated with pilot fatigue are being taking place actively all over the world. In the developed world such as the United States and European Union etc., the airline pilot fatigue is already being managed by considering the show up time, the number of take offs and landings made, resting period, jet lag etc., when computing flight duty time. In Korea, the flight duty time is only limited by the total number of hours per given period regardless of the flight conditions and environment. Such lack of regulation demand development of a fatigue management program. According to the survey taken from the airline pilots in Korea, it has been found that acquiring foreign policies directly may in turn, increase the risk of fatigue. This research suggest future studies regarding fatigue management program adapted exclusively to Korean domestic flight environment and culture.

Sleep-Wake Pattern, Social Jetlag, and Daytime Sleepiness among Rotating Shift Air Traffic Controllers (교대근무 항공교통관제사의 근무형태별 수면-각성 양상, 사회적 시차 및 주간졸림증에 관한 연구)

  • Jong-Duk Jeon;Ahrin Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.91-102
    • /
    • 2024
  • This study aimed to investigate the sleep-wake patterns, social jetlag (SJL), and daytime sleepiness (DS) among air traffic controllers (ATCs) with rotating shifts. A total of 133 shift-rotating ATCs participated by completing self-report questionnaires regarding their sleep-wake patterns and DS. SJL, indicating the mid-sleep difference between workdays (W) and free days (F), was calculated for each shift. Night-shift workdays had the shortest sleep duration (SD) (5.28 hours), whereas free days following day shifts had the longest SD (6.66 hours). SJL for day and night shifts was 2.73 and 2.71 hours, respectively. The average DS score was 7.92 out of 24, with a 28.6% prevalence of DS. There was a negative correlation between SD following day shifts and SJL for the day shifts. Given these findings, it is recommended to implement effective interventions and work schedules to maintain consistent sleep patterns and minimize social jetlag to address sleep issues for shift-working ATCs.

A Study on the Improvement Plan of the Tax-Free System for Overseas Laborers : Focusing on International Air Crew (국외근로자 비과세제도 개선방안 연구 : 국제선항공승무원을 중심으로)

  • Lee, Ki Il;Kim, Soo Ryun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.42-52
    • /
    • 2015
  • Since the tax-free system for overseas laborers was implemented in 1974, the tax-free limits of international air crew, overseas construction workers and crewmen of deep-sea fishing ships and ocean-going ships had been identical by 2005, but there are big differences, currently. The Ministry of Strategy and Finance pointed out the poor working environments and international competitiveness of the industries to explain the reason for the differential tax-free limit. From this perspective, the fairness of the tax-free system for overseas laborers was analyzed. This is an empirical study, based on the objective fact. The study finding showed that international air crew were working in the structural flight work environments to threaten the right of health due to jet lag and excessive exposure to high-altitude cosmic radiation. Therefore, it was analyzed there should be a proper system reform to apply the tax-free limits to international air crew which are identical to those applied to overseas construction workers and crewmen of deep-sea fishing ships and ocean-going ships, for a fair taxation.

Object Detection and 3D Position Estimation based on Stereo Vision (스테레오 영상 기반의 객체 탐지 및 객체의 3차원 위치 추정)

  • Son, Haengseon;Lee, Seonyoung;Min, Kyoungwon;Seo, Seongjin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.318-324
    • /
    • 2017
  • We introduced a stereo camera on the aircraft to detect flight objects and to estimate the 3D position of them. The Saliency map algorithm based on PCT was proposed to detect a small object between clouds, and then we processed a stereo matching algorithm to find out the disparity between the left and right camera. In order to extract accurate disparity, cost aggregation region was used as a variable region to adapt to detection object. In this paper, we use the detection result as the cost aggregation region. In order to extract more precise disparity, sub-pixel interpolation is used to extract float type-disparity at sub-pixel level. We also proposed a method to estimate the spatial position of an object by using camera parameters. It is expected that it can be applied to image - based object detection and collision avoidance system of autonomous aircraft in the future.

Regulation of the Working Hour of Flight Crew in Germany (독일에서의 항공기승무원의 근로시간 규제)

  • Choi, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.20 no.2
    • /
    • pp.235-251
    • /
    • 2005
  • German working hour law of 1994(Arbeitszeitgesetz) provides maximum working hour as 8 hours a day and 48 hours per week. The law provides that minimum 11 hours rest-time is required between the end of a day's work and the beginning of the next day's work. Namely, the hour that the workers are put under commanding of the user is restricted within 13 hours per day. In the meantime, article 5, 7, 14, and 15 of the law have some letting the exceptional provisions regarding the working hour and rest-time of flight crew, and 2nd administrative order for the aviation transportation business owner, which is established based on such exceptional provisions(2.DV LuftBO), provides the working hour and rest-time of flight crew quite in detail. The administrative order is detailed quite regarding block time, flight working hour, and rest-time. So, it does not need to interpret additionally. Airlines in Korea should observe the both Labor Standard Act applying to general workers and Aviation Act focused on flight crew, so it is difficult that airlines manages working hour and rest-time of the flight crew efficiently. Therefore, it is desirable that our country refers to and considers adopting this legislation method of Germany which regulates working hour and rest-time of flight crew in detail in the 2.DV LuftBO.

  • PDF