• Title/Summary/Keyword: 비표면적

Search Result 935, Processing Time 0.031 seconds

A Study on the Deposition of Chitosan for Enhancing the Adsorption Ability of Activated Carbon (활성탄의 흡착력 향상을 위한 키토산 첨착에 관한 연구)

  • Ju, Han-Shin;Kim, Byung-Hoon;Jung, Sang-Chul;Ra, Deog-Gwan;Chung, Min-Chul;Ahn, Ho-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.203-210
    • /
    • 2000
  • The preparative methods of a chitosan-deposited activated carbon and its characteristics were studied by using three kinds of chitosan with different degree of deacetylation and average molecular weight. The procedure was consisted of the dissolution of chitosan into acid solution, impregnation of activated carbon, agitation, evaporation, and drying. When the chitosan-dissolved acid and its concentration, amounts of chitosan deposited, and agitation conditions were changed, the specific surface area, deposition state on surface, and stability were investigated, and amounts of Cr(VI) adsorbed was measured. In the preparation process, it was proper to agitate the chitosan-dissolved acetic acid solution at room temperature for 1hr. In the deposition of chitosan with low molecular weight, the specific surface area of activated carbon was greatly decreased even at low chitosan loading, but in the case of high molecular weight it was not nearly changed to 10wt% loading. It was known that chitosan was uniformly and physically deposited on activated carbon. The chitosan-deposited activated carbon was stable into the solution over about pH 6. The removal of Cr(VI) was remarkably enhanced by adding the adsorption function of chitosan to the surface of activated carbon with about 5wt% chitosan. It may be therefore used as an adsorbent for removing the pollutants in air and wastewater.

  • PDF

Adsorption Characteristics of Charcoal from Major Korean Wood Species and Wood-based Materials (II) (국산 주요 수종 및 목질재료 탄화물의 흡착 특성(II))

  • Lee, Dong-Young;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.281-290
    • /
    • 2011
  • We analyzed the basic characteristics and adsorption property of carbonized materials from thinning byproducts of major Korean wood species for evaluating as charcoal making raw material. Yield of charcoal was decreased with increasing the carbonization temperature for all wood species. Refining degrees was 9.0 at $400^{\circ}C$, 3.3~5.0 at $600^{\circ}C$ and 0 at $800^{\circ}C$, and was no difference among wood species. With increasing the carbonization temperature, the fixed carbon content was also increased, and charcoal from softwoods had more fixed carbon content than that from hardwoods. Specific surface area was increased with increasing the carbonization temperature, softwood charcoal had more specific surface area than that of hardwood. Pinus rigida showed the highest specific surface area. In formaldehyde removal by charcoal, some materials had highest at $600^{\circ}C$ and the others had highest at $800^{\circ}C$. Pinus koraiensis, Qurcus acutissima and MDF showed maximum formaldehyde removal ability at $600^{\circ}C$. Ethylene gas removal ability of charcoal was increased with increasing the carbonization temperature, and the charcoal from Pinus rigida and Robinia pseudoacacia had higher ethylene gas removal ability than the other species.

Ce addition into Ni/$MgAl_2O_4$ catalysts in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for improvement of coke resistance (수증기-이산화탄소 복합개질 반응에서 Ce가 증진된 Ni-Ce/$MgAl_2O_4$ 촉매의 탄소 침적저항성 향상에 관한 연구)

  • Lee, Sung-Hun;Koo, Kee-Young;Jung, Un-Ho;Roh, Hyun-Seog;Lee, Deuk-Ki;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.226.1-226.1
    • /
    • 2010
  • 본연구에서는 GTL(gas to liquids)공정의 합성가스 생산을 위해 수증기-이산화탄소 복합개질반응(Combined Steam and Carbon dioxide Reforming of Methane, CSCRM)을 수행하였다. CSCRM은 수증기와 이산화탄소의 공급비 조절을 통해 $H_2$/CO비를 2로 맞추기 용이한 장점을 지니고 있어 다른 단일 개질 반응과 달리 합성가스 생산 시 $H_2$/CO 비율을 조절하기 위한 부가적인 공정이 필요하지 않아 경제적인 공정이다. 일반적으로 사용되는 Ni개질촉매는 가격대비 우수한 성능을 보이지만 S/C비가 낮은 CSCRM의 경우 촉매표면의 탄소침적에 의한 비활성화가 야기되는 문제점이 있다. 따라서 본 연구에서는 산소저장능력과 산소전달능력이 우수한 $CeO_2$를 조촉매로 첨가하여 표면에 형성된 코크 제거가 용이하도록 하였다. Ni-Ce/$MgAl_2O_4$촉매는 동시함침법(co-impregnation)으로 제조하였으며, Ni의 함량을 10wt%로 고정한 상태에서 Ce의 함량을 조절하여 Ce/Ni 최적비를 찾고자 하였다. XRD, TPR, BET, $H_2$-Chemisorption과 같은 촉매의 특성분석을 통해 촉매의 비표면적, 환원특성과 Ni입자의 분산도 등을 확인하였다. Ce를 첨가함에 따라 Ce2.5wt%까지는 비표면적이 증가하다가 이후 점차 줄어드는 경향성을 보였다. 또한, $H_2$-Chemisorption 결과 역시 비표면적과 유사한 경향성을 보였는데, Ce5.0wt%까지 Ni 분산도가 증가 하다가 다시 감소하는 것을 확인할 수 있었다. 반응실험은 $H_2O:CO_2:CH_4:N_2$ = 0.8:0.4:1:1의 공급조건에서 수행하였으며, 질소와 수소 환원분위기로 $700^{\circ}C$에서 1시간 환원 후 $650^{\circ}C$에서 $550^{\circ}C$범위로 온도를 떨어뜨려가면서 반응을 수행하였다. Ce를 첨가함에 따라 $CH_4$ 전환율이 증가를 하다가 Ce2.5wt% 이후 감소하는 것을 확인할 수 있었다. 이러한 높은 촉매 활성은 Ce 첨가로 인해 환원특성이 좋아지고 Ni분산도가 증가하여 담체와 강한 상호작용(SMSI)을 형성함으로 탄소침적 저항성 강화에 기인한 것이다.

  • PDF

Characterization of Pine Bark Charcoal Prepared from Small and Large-Scale Carbonization Kilns (소용량 및 대용량 탄화로에서 제조된 소나무 수피탄의 특성)

  • 문성필;황의도;박상범;권수덕
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2002
  • Pine bark was carbonized by using a small-scale experimental kiln and three different types of large-scale kilns (simple (400-$500^{\circ}C$), improved (600-$700^{\circ}C$) and special kiln (800-$1,000^{\circ}C$). The physical properties and pore structures of the bark charcoals prepared were analyzed. When the bark was carbonized at various temperatures ranging from 500 to $900^{\circ}C$in the presence of nitrogen, carbonization yield decreased rapidly with increasing carbonization temperature and it remained constant from 700 to $900^{\circ}C$. The carbonization yield of the bark was 16 - 18% higher than that of pine wood. The BET specific surface areas and iodine values increased with a decrease in carbonization yield. The BET specific surface areas of the bark charcoals reached about 400 -$500m^2/g$ for carbonization yield of 32-40%. The pine wood charcoal prepared at $600^{\circ}C$ for 30 min resulted in a more microporous structure, whereas the bark charcoal prepared at the same condition was more mesoporous. The carbonization yields and physical properties such as iodine values and BET specific surface areas of bark charcoals prepared by using the large-scale kilns were very similar to those of the small-scale kiln. The results indicated that the pine bark could be used as starting material to produce good quality charcoal having a large specific surface area and a high carbonization yield.

  • PDF

Effect of Acid Catalyst Kinds on the Pore Structural Characteristics of Water Glass based Silica Aerogel (산 촉매가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향)

  • Nah, Ha-Yoon;Jung, Hae-Noo-Ree;Lee, Kyu-Yeon;Ku, Yang Seo;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.13-18
    • /
    • 2017
  • Water glass is much cheaper than silicon alkoxide, so it has advantage for commercialization. A condensation by acid catalyst makes considerable effect about the properties of water glass based silica aerogel among many factors in silica aerogel process. The pore structural properties of water glass based silica aerogel such as specific surface area and pore size distribution have been investigated through the changes in the amount and the kinds of acid catalyst. It has been confirmed that water glass based silica aerogel is affected by various conditions of catalyst in the condensation reaction such as the kind, concentration, and the amount of mole of acid catalyst on the properties of final products. Especially, it is checked that the effect of mole of acid is more prominent than that of concentration. In the case for conventional method with introducing 4M HCl in condensation step, the silica aerogel could be synthesized which has $394m^2/g$ of specific surface area, 2.20 cc/g of pore volume, 22.3 nm of average pore size, and 92.53% of porosity. On the other hand, when 4M sulfuric acid was used with 73 mmol at the condensation step of water glass based silica aerogel, the pore structural characteristics of water based silica aerogel showed better properties than the case of using HCl, for example, specific surface area was measured as $516m^2/g$, and pore volume, average pore diameter, and porosity were obtained as 3.10 cc/g, 24.1 nm, and 96.1%, respectively.

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method (착체중합법을 이용한 LiMn1.5Ni0.5O4 분말합성 및 특성평가)

  • Sin, Jae-Ho;Kim, Jin-Ho;Hwang, Hae-Jin;Kim, Ung-Soo;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.194-199
    • /
    • 2012
  • The $LiMn_{1.5}Ni_{0.5}O_4$, substituting a part of Mn with Ni in the $LiMn_2O_4$, the spinel structure has good charge-discharge cycle stability and high discharge capacity at 4.7 V. In this study $LiMn_{1.5}Ni_{0.5}O_4$ powders were synthesized by polymerization complex method. The effect on the characteristics of synthesized $LiMn_{1.5}Ni_{0.5}O_4$ powders was studied with citric acid (CA) : metal ion (ME) molar ratio (5 : 1, 10 : 1, 15 : 1, 30 : 1) and calcination temperature ($500{\sim}900^{\circ}C$). Single phase of $LiMn_{1.5}Ni_{0.5}O_4$ was observed from XRD analysis on the powders calcined at low ($500^{\circ}C$) and high temperatures ($900^{\circ}C$). The crystalline size and crystallinity increased with calcination temperature. At low calcination temperature the particle size decreased and specific surface area increased as the CA molar ratio increased. On the other hand, high particle growth rate at high calcination temperature interfered the particle size reduction and specific surface area increase induced by the increase of CA molar ratio.

A Study on Low-Temperature Oxidation Reactivity of Pt/ZrO2·SO42-Catalyst (ZrO2·SO42-에 담지된 백금촉매의 저온산화반응성에 대한 연구)

  • Kim, Kiseok;Lee, Tae Jung;Kim, Byoung Sam;Kim, Du Soung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.141-148
    • /
    • 1998
  • Reactivity of Pt catalysts(0.2, 0.5 wt% Pt) supported on solid super acid, $ZrO_2$ $SO_4{^{2-}}$ for low-temperature oxidation was investigated for complete oxidation of cyclohexane. Catalytic activity measured as reactant conversion in a packed-bed tubular reactor increased in accordance with the acidity and specific surface area of the catalyst activity and specific surface area of $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst were diminished by adding potassium during catalyst preparation. the catalyst activity decreased in accordance with the amount of potassium added. In addition, $Pt/ZrO_2$ $SO_4{^{2-}}$ catalyst exhibited an activity greater than that of a $Pt/SiO_2$ or $Pt/Al_2O_3$ catalyst possessing much larger specific surface area at $250^{\circ}C$ for the reactant stream of 15.000 ppm cyclohexane concentration and $18,000hr^{-1}$ space velocity, a cyclohexane conversion as high as 96% was obtained over 0.2 wt% $Pt/ZrO_2$ $SO_4{^{2-}}$, whereas cyclohexane conversions over 0.2 wt% $Pt/SiO_2$ and 0.2 wt% $Pt/Al_2O_3$ were 83 and 79%, respectively.

  • PDF

Preparation of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (噴霧熱分解 工程에 의한 인듐 酸化物 나노 粉末 製造)

  • Yu, Jae-Keun;Park, Si-Hyun;Sohn, Jin-Gun
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.16-25
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is prepared from the indium chloride solution by the spray pyrolysis process. The effects of the concentration of raw material solution, the nozzle tip size and the air pressure on the properties of powder were studied. As the indium concentration of the raw material solution increased from 40 g/l to 350 g/l, the average particle size of the powder gradually increased from 20 nm to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the nozzle tip size increased from 1 nm to 5 nm, the average particle size of the powder increased from 40 nm to 100 nm, the particle size distribution was much more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the air pressure increased from 0.1 kg/cm$^2$ to 0.5 kg/cm$^2$, the average particle size of the powder varies slightly upto 90~100 nm. As the air pressure increased from 1 kg/cm$^2$ to 3 kg/cm$^2$, the average particle size decreased upto 50~60 nm, the intensity of a XRD peak decreased and the specific surface area increased.

Particle Characteristics of Flame-Synthesized γ-Al2O3 Nanoparticles (화염법으로 제조된 감마-Al2O3 나노입자의 화염조건에 따른 입자특성 연구)

  • Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.509-515
    • /
    • 2012
  • In this study, ${\gamma}-Al_2O_3$ nanoparticles were synthesized by using coflow hydrogen diffusion flames. The synthesis conditions were varied with using several oxygen concentrations in the oxidizing air. The particle characteristics of the flame-synthesized $Al_2O_3$ nanoparticles were determined by examining the crystalline structure, shape, and specific surface area of the nanoparticles. The measured maximum centerline temperature of the flames ranged from 1507.8 K to 1998.7 K. The morphology and crystal structure of the $Al_2O_3$ nanoparticles were determined from SEM images and XRD analyses, respectively. The particle sizes were calculated from measured BET specific surface areas and ranged from 25 nm to 52 nm. From XRD analyses, it was inferred that a large number of the synthesized nanoparticles were ${\gamma}-Al_2O_3$ nanoparticles including ${\theta}-Al_2O_3$ nanoparticles.