• Title/Summary/Keyword: 비평형 모델

Search Result 49, Processing Time 0.024 seconds

A Numerical Study of Diffusion Flames in Supersonic Flow (초음속 유동장 내의 확산 화염에 관한 수치 연구)

  • 김지호;윤영빈;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.17-17
    • /
    • 1997
  • 극초음속 여객기와 군사용 항공기에 대한 수요가 증가함에 따라서 새로운 개념의 다양한 추진기관이 연구가 진행되고 개발되어 왔다. 초음속 항공기의 속도 영역은 마하 10-20 정도가 되는데 이 속도 한계를 극복하기 위하여 초음속 연소 램제트 엔진(SCRamjet; Supersonic Combustion Ramjet)이 제안되었다. 스크램 제트를 개발하기 위해서는 연료와 산화제의 혼합 효율 문제, 화염의 안정화 문제, 벽면의 냉각에 관한 문제 등 몇 가지 기본적인 문제들을 해결해야 한다. Univ of Michigan에서 실험한 연소기를 모델로 본 연구에서는 연료와 공기의 혼합에 관한 수치 연구를 수행하였다. 다원 혼합기체에 관한 축대칭 Navier-Stokes 방정식을 지배 방정식을 이용하였고 비평형 화학반응식을 고려하였다. 공간 차분에는 유한 체적법을 이용하였다. 대류 플럭스 항은 Roe의 Upwind FDS 기법을 사용하여 차분하였고 점성항에는 중심 차분법을 이용하였다. 시간 적분법으로는 근사 자코비안과 LU분할 기법을 이용한 완전 내재적 방법이 쓰였다. 난류 모델로는 Mentor에 의해 제안된 2 방정식 k-$\varepsilon$/k-$\omega$ 혼합모델을 사용하였다. 유동장이 실험에서의 찍은 사진과 유사한 모습의 충격파 간섭을 수치 모사하였고 수소가 확산되는 모습과 함께 노즐 lip 주위의 재순환 영역에 대해서 살펴볼 수 있었다.

  • PDF

A Study on Transport Characteristics of MTBE(Methyl Tertiary Butyl Ether) in Soil (MTBE(Methyl Tertiary Butyl Ether)의 토양내 이동특성에 관한 연구)

  • Cho, Ki-Chul;Park, Chang-Woong;Choi, Won-Joon;Kang, Seung-Yub;Hwang, Jong-Hyun;Kim, Youn-Soo;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.190-198
    • /
    • 2008
  • In this stduy, the column experiments were carried out assuming the soil was contaminated by leakage of gasoline containing MTBE from USTs and pipes around gas stations. Then, characteristics of MTBE transport in the soil were investigated using CXTFIT program. The column experiments with different soil properties, moisture content, organic matter content and flow rate were carried out. Some parameters(D, R, $\beta$, $\omega$) used in two-site non-equilibrium adsorption model were obtained from measuring the MTBE concentration in injection-liquid and in effluent and using CXTFIT program. In addition, The characteristics of MTBE transport in the soil was found using BTCs and obtained parameters. Consequently, the advection decreased as the increase of the content of fine particle and organic, while the MTBE transport by advection was enhanced as increasing flow rate and moisture content.

TRAC-PF1을 이용한 FLECHT-SEASET 평가계산

  • 이재훈;최동수;이걸우;황태석;박병서;조창석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.627-632
    • /
    • 1997
  • FLECHT-SEASET 실험을 이용하여 냉각재상실사고시 Reflood에 대한 TRAC-PF1 전산코드의 예측 능력을 평가하였다. FLECHT-SEASET 실험 장치는 3.657m(12 ft) 높이 161개 전열 봉으로 이루어 져 있으며, 다양한 재관수율, 계통압력, 초기 피복재온도, 재관수온도 노심내 반경방향 출력분포 둥의 조건에 따라 수행된 실험이다. TRAC-PF1은 비균질 비평형 이상유동 열수력(Nonhomogeneous Non-equilibrium Two-Fluid Hydrodynamic)모델을 사용하고 원자로 압력용기는 3차원으로 모델할 수 있는 최적전산코드로서, 이 평가 계산에는 HP Version이 사용되었다. 본 연구에서는 재관수율 변화에 따라 달라지는 연료봉 최대 피복재온도와 Quench 시간에 대한 TRAC-PF1 전산코드의 예측 능력을 중점적으로 평가하였다. 계산 결과 TRAC-PF1은 최대 피복재온도는 약 20-100$^{\circ}$K 낮게, Quench 시간은 실험치와 비교하여 약 40-150초 정도 늦게 예측하는 것으로 나타났는데, 재관수율이 낮을수록 최대피복재 온도는 낮게, Quench 시간은 늦게 예측하는 경향을 보이고 있다. 또한 재관수율이 3 in/sec 이상에서 노심 상부가 일찍 Quenching 되는 것으로 계산되는데, 이는 노심상부 열전달 Regime의 부적절한 계산이 원인으로 보인다.

  • PDF

Column Test for Evaluation on Removal Efficiency of Heavy Metal and Nutrients by Double Layered Permeable Reactive Barrier (주상실험을 통한 연속식 반응벽체에서의 복합오염물질 제거능 평가)

  • Oh, Myounghak;Kim, Yongwoo;Park, Junboum;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.5-11
    • /
    • 2015
  • The double sheeted permeable reactive barrier containing two different reactive materials can be applied to remediate the groundwater contaminated by nutrients and heavy metals. In this study, in order to evaluate the removal efficiency of contaminants including ammonium, cadmium and phosphate by double layered permeable reactive barrier containing zeolite and steelmaking slag, column tests were performed. In addition, nonequilibrium reaction in column tests was analyzed by two-site nonequilibrium advection-dispersion model. Column test results showed that zeolite is effective for removal of ammonium, while steelmaking slag is effective for removal of phosphate and cadmium. The sequential reaction of zeolite and steelmaking slag gave the better removal efficiency for ammonium.

A Review of Kinetic Model for Production of Highgrade Steel : Part. 2. Complex Reaction Model and Single Reaction Model (고급강 제조 반응 모델의 검토 : Part. 2. 종합 모델 및 단일 반응 모델)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • As a demand of high-end steel raises, the importance of secondary refinement process also increases. However, the content of each component in molten steel, slag and inclusions change with the time, meaning the secondary refinement process is not an equilibrium state. Furthermore, many reactions occur between molten steel, slag, inclusion, refractory and alloying element during secondary refinement process. In order to consider the above complex reactions with non-equilibrium state, a few researchers developed kinetic models in secondary refinement process based on the experimental numerical equations. It is important to analyze and review to the previously reported models to develop a precise model. Therefore, in present study, the complex reaction models based on kinetic in secondary refinement process were analyzed, reviewed, and introduced. Moreover, the single reaction models also introduced which would be applied to the complex reaction models.

A Numerical Model for Non-Equilibrium Electroosmotic Flow in Micro- and Nanochannels (마이크로/나노 채널에서의 비평형 전기삼투 유동 모사를 위한 수치모델)

  • Kwak Ho Sang;Jr. Ernest. F. Hasselbrink,
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.161-164
    • /
    • 2004
  • A finite volume numerical model is developed for simulating non-equilibrium electroosmotic flow in micro- and nanochannels. The Guoy-Chapman model is adopted to compute the flow and electric potential. The Nernst-Planck equation is employed to trace unsteady transports of ionic species, i.e., time-dependent net charge density. A new set of boundary conditions based on surface charge density are designed rather than using the conventionally-employed zeta potential. A few issues for an efficient computation of electroosmotic flows are discussed. Representative computational examples are given to illustrate the robustness of the numerical model.

  • PDF

Analysis of Heat Transfer Characteristics in the Thermally Developing Region of a Porous Channel by LTNE Model (LTNE 모델을 이용한 다공성 채널 입구영역에서의 열전달 특성 해석)

  • Lee, Sang-Tae;Lee, Kwan-Soo;Kim, Seo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.983-990
    • /
    • 2002
  • A numerical analysis has been carried out on forced convection heat transfer in the developing region of a porous channel. The channel is filled with an isotropic porous medium. At the channel walls, a uniform heat flux is given. Comprehensive numerical solutions are acquired to the Brinkman-Forchheimer extended Darcy equation and the LTNE model which does not employ the assumption of local thermal equilibrium between solid and fluid phases. Details of thermal fields in the developing region are examined over wide ranges of the thermal parameters. The numerical solutions at the fully developed region are compared with the previous analytical solutions. The correlation for predicting local Nusselt number in a porous channel is proposed.

Fully coulpled CMC modeling for three-dimensional turbulent nonpremixed syngas flame (CMC 모델을 이용한 난류 비예혼합 Syngas 화염장 해석)

  • Kim, Gun-Hong;Lee, Jung-Won;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.111-120
    • /
    • 2006
  • The fully coupled conditional moment closure(CMC) model has been developed to realistically simulate the structure of complex turbulent nonpremixed syngas flame, in which the flame structure could be considerablyl influenced by the turbulence, transport history, and heat transfer as well. In order to correctly account for the transport effect, the CMC transport equations fully coupled with the flow and mixing fields are numerically solved. The present CMC approach has successfully demonstrated the capability to realistically predict the detailed structure and the overall combustion characteristics. The numerical results obtained in this study clearly reveal the importance of the convective and radiative heat transfer in the precise structure and NOx emission of the present confined combustor with a cooling wall.

  • PDF

Development of Lagrangian Particle Dispersion Model Based on a Non-equilibrium 2.5 Level Closure Turbulence Model (비평형 2.5 난류모델을 이용한 라그란지안 입자 확산모델 개발)

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.613-623
    • /
    • 1999
  • A Lagrangian particle dispersion mode l(LPDM) coupled with the prognostic flow model based on nonequilibrium level 2.5 turbulence closure has been dcveloped to simulate the dispersion from an elevated emission source. The proposed model did not require any empirical formula or data for the turbulent statistics such as velocity variances and Lagrangian time scales since the turbulence properties for LPDM were calculated from results of the flow model. The LPDM was validated by comparing the model results against the wind tunnel tracer experiment and ISCST3 model. The calculated wind profile and turbulent velocity variances were in good agreement with those measured in the wind tunnel. The ground level concentrations along the plume centerline as well as the dispersion codfficients also showed good agreement in comparison with the wind tunnel tracer experiment. There were some discrepancies on the horizontal spread of the plume in comparison with the ISCST3 but the maximum ground level concentrations were in a good confidence range. The results of comparisons suggested that the proposed LPDM with the flow model was an effective tool to simulate the dispersion in the flow situation where the turbulent characteristics were not available in advance.

  • PDF

Multi-phase Flow Modeling of Vapor Explosion Propagation (증기폭발 전파과정 해석을 위한 다상유동 모델 개발)

  • Park, I. K.;Park, G. C.;K. H. Bang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.103-117
    • /
    • 1996
  • A mathematical model of vapor explosion propagation is presented. The model predict two-dimensional, transient flow fields and energies of the four fluid phases of melt drop, fragmented debris, liquid coolant and vapor coolant by solving a set of governing equations with the relevant constitutive relations. These relations include melt fragmentation, coolant-phase-change, and heat and momentum exchange models. To allow thermodynamic non-equilibrium between the coolant liquid and vapor, an equation of state for oater is uniquely formulated. A multiphase code, TRACER, has been developed based on this mathematical formulation. A set of base calculations for tin/water explosions show that the model predicts the explosion propagation speed and peak pressure in a reasonable degree although the quantitative agreement relies strongly on the parameters in the constitutive relations. A set of calculations for sensitivity studies on these parameters have identified the important initial conditions and relations. These are melt fragmentation rate, momentum exchange function, heat transfer function and coolant phase change model as well as local vapor fractions and fuel fractions.

  • PDF