• Title/Summary/Keyword: 비평형응축

Search Result 26, Processing Time 0.024 seconds

A computational study on compressible flow of humid air around airfoil (익형 주위의 압축성 습공기 유동에 대한 수치 해석적 연구)

  • ;Zvi Rusak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • 습공기에 포함된 수증기가 상(Phase)변화를 일으킬 때 잠열이 발생하고 이 잠열은 익형 주위의 압축성 유동 상태량들을 변화시키므로, 이러한 열 증가가 유동에 끼치는 영향에 대하여 수치해석을 통하여 연구 수행하였다. 수치해석은 Rusak 과 Lee [1]가 최근에 연구 수행한 미교란 방법(small-disturbance approach)에 근거하여 이루어졌다. 고전적 핵 생성 모델과 작은 물방울 성장(droplet growth)모델을 이용한 이 방법에서는 비평형 균질 응축과정에서 일어나는 열 방출을 묘사한다. 응축에 의한 열전달, 압축성 유동의 운동에너지, 그리고 유동의 열적 상태량들 사이에서 일어나는 비선형 상호영향을 조사하고, 또한 주어진 문제를 지배가호 있는 상사 파라미터들을 제시하였다. 계산 결과들은 Euler 방정식을 사용하여 얻은 선행 수치계산들과 비교하여 잘 일치됨을 보였다. 상사법칙은 유동 동역학과 응축 상태량들이 상당히 비슷하게 거동하는 다양한 유동 형태들을 제안한다. 압축성 습공기 유동은 유체기계에 사용되는 익형들의 공력 성능을 증가시키는데 응용될 수 있다.

Effect of Non-Equilibrium Condensation on Force Coefficients in Transonic Airfoil Flow (천음속 에어포일 유동에서 비평형 응축이 Force Coefficients 에 미치는 영향)

  • Jeon, Heung Kyun;Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1009-1015
    • /
    • 2014
  • The present study investigated the effects of non-equilibrium condensation with the angle of attack on the coefficients of pressure, lift, and drag in the transonic 2-D flow of NACA0012 by numerical analysis of the total variation diminishing (TVD) scheme. At $T_0=298k$ and ${\alpha}=3^{\circ}$, the lift coefficients for $M_{\infty}=0.78$ and 0.81 decreased monotonically with increasing ${\Phi}_0$. In contrast, for $M_{\infty}$ corresponding to the Mach number of the force break, $C_L$ increased with ${\Phi}_0$. For ${\alpha}=3^{\circ}$ and ${\Phi}_0=0%$, $C_D$ increased markedly as $M_{\infty}$ increased. However, at ${\Phi}_0=60%$ and ${\alpha}=3^{\circ}$, which corresponded to the case of the condensation having a large influence, $C_D$ increased slightly as $M_{\infty}$ increased. The decrease in profile drag by non-equilibrium condensation grew as the angle of attack and stagnation relative humidity increased for the same free stream transonic Mach number. At ${\Phi}_0=0%$, the coefficient of the wave drag increased with the attack angle and free stream Mach number. When ${\Phi}_0$ > 50%, the coefficient of the wave drag decreased as ${\alpha}$ and $M_{\infty}$ increased. Lowering ${\Phi}_0$ and increasing $M_{\infty}$ increased the maximum Mach number.

Effect of Nonequilibrium Condensation on the Oscillation of the Terminating Shock in a Transonic Airfoil Flow (천음속 익형 유동에 있어서 비평형 응축이 충격파 진동에 미치는 영향)

  • Kim, Jin-Soo;Lee, Sung-Jin;Alam, Miah Md. Ashraful;Kwon, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • In this study, to find the effect of nonequilibrium condensation on the oscillation of the terminating shock wave in transonic flows, an NACA0014 airfoil flow with nonequilibrium condensation is analyzed using the total variation diminishing (TVD) numerical scheme. Transonic free stream Mach numbers of 0.81-0.87 are tested with variations in the stagnation relative humidity. For the same free stream Mach number and attack angle of ${\alpha}=0^{\circ}$, an increase in the stagnation relative humidity attenuates the strength of the terminating shock and reduces the oscillation of the terminating shock wave. Furthermore, for the same stagnation relative humidity, the larger the free stream Mach number becomes, the shorter the period of the oscillation shock wave is. The excursion distance of the oscillation shock increases with the free stream Mach numbers for the same stagnation relative humidity. Finally, it is found that for the same shock location, the strength of the oscillating shock facing upstream is stronger than that facing downstream.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.

Effects of Nonequilibrium Condensation on an Oblique Shock Wave in a Supersonic Nozzle of Constant Expansion Rate (팽창률이 일정한 초음속 노즐흐름에 있어서 비평형 응축이 경사충격파에 미치는 영향)

  • 강창수;권순범;김병지;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1311-1319
    • /
    • 1990
  • For the purpose of preventing the flow undulation in the cascade of steam turbine, the blades are made into a constant expansion rate in static pressure. And the flow in those cascades is transonic or supersonic in the range of 0.7-2.0 in Mach number. As a consequence, an oblique shock wave, known as inner or outer edge shock wave, arises in the flow of cascades. Especially when the steam in cascades is in a state of high wetness, nonequilibrium condensation and condensation shock wave occur, and they give rise to an interference with oblique shock wave. In the present study the case of expansion of moist air through a supersonic nozzle of constant expansion rate, which behaves similar to that of wet steam, was adopted. The effect of nonequilibrium condensation on the oblique shock wave generated by placing the wedge into the supersonic part of the nozzle was investigated. Furthermore, the relationship between nonequilibrium condensation zone and incident point of the oblique shock wave, oblique shock wave angle, the variations of angles of incident and reflected shock waves due to the variation of initial stagnation supersaturation and the relationship between the height of Mach stem and initial stagnation supersaturation are discussed.

A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(II) (응축충격파와 경계층 간섭의 피동제어(II))

  • Choe, Yeong-Sang;Gwon, Sun-Beom;Kim, Byeong-Ji
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.329-340
    • /
    • 1997
  • A passive control of interaction of condensation shock wave / boundary layer for reducing the strength of condensation shock was conducted experimentally in a 2.5 * 8 cm$^{2}$ indraft type supersonic wind tunnel. The effects of following factors on passive control were investigated: 1) the thickness of porous wall, 2) the diameter of porous hole, and 3) the orientation of porous hole. On the other hand, the location of nonequilibrium condensation region and condensation shock wave was controlled by regulation of the stagnation conditions. Surface static pressure measurements as well as Schlieren observations of the flow field were obtained, and their effects were compared with the results the cases of without passive control. It was found that thinner porous wall, smaller porous hole and FFH orientation for the same cavity size and porosity of 12% are more favourable than the cases of its opposite.

ANALYSIS ON STEAM CONDENSING FLOW USING NON-EQUILIBRIUM WET-STEAM MODEL (비평형 습증기 모델을 적용한 증기 응축 유동 해석)

  • Kim, C.H.;Park, J.H.;Ko, D.G.;Kim, D.I.;Kim, Y.S.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • When the steam is used as working fluid in fluid machinery, different from other gases as air, phase transition (steam condensation) can occur and it affects not only the flow fields, but also machine performance & efficiency. Therefore, considering phase transition phenomena in CFD calculation is required to achieve accurate prediction of steam flow and non-equilibrium wet-steam model is needed to simulate realistic steam condensing flow. In this research, non-equilibrium wet-steam model is implemented on in-house code(T-Flow), the flow fields including phase transition phenomena in convergent-divergent nozzle are studied and compared to results of advance researches.

Condensation processes in transonic two-phase flows of saturated humid air using a small-disturbance model (미교란 모델을 이용한 포화 습공기 천음속 2상 유동에서의 응축현상)

  • Lee, Jang-Chang;Zvi Rusak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.23-29
    • /
    • 2003
  • Transonic two-phase flow of Saturated humid air, in which relative humidity is 100%, with various condensation processes around thin airfoils is investigated. The study uses an extended transonic small-disturbance(TSD) model of Rusak and Lee [11, 12] which includes effects of heat addition to the flow due to condensation. Two possible limit types of condensation processes are considered. In the nonequilibrium and homogeneous process, the condensate mass fraction is calculated according to classical nucleation and droplet growth rate models. In the equilibrium process, the condensate mass fraction is calculated by assuming an isentropic process. The flow and condensation equations are solved numerical1y by iterative computations. Results under same upstream conditions describe the flow structure, field of condensate, and pressure distribution on airfoil's surfaces. It is found that flow characteristics, such as position and strength of shock waves and airfoil’s pressure distribution, are different for the two condensation processes. Yet, in each case, heat addition as a result of condensation causes significant changes in flow behavior and affects the aerodynamic performance of airfoils.

A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow (비평형 응축이 충격파 진동에 미치는 영향에 관한 수치 해석적 연구)

  • Jeon, Heung Kyun;Kim, In Won;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of ${\alpha}=0^{\circ}$, the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of $M_{\infty}=0.87$ and ${\phi}_0=60%$, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of ${\phi}_0=30%$ amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in $C_D$ become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

Research on Gas-phase Condensation of Cryogenic Propellant in Pipelines of a Liquid Rocket Engine (로켓엔진의 극저온 연료 공급관내에서 기체상 응축에 관한 연구)

  • Bershadskiy, Vitaly A.;Phyrsov, Valery P.;Cho, Kie-Joo;Oh, Seung-Hyub;Kim, Cheul-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.248-252
    • /
    • 2007
  • This article is related to the possibility for continuous operation of a liquid rocket engine when a portion of cryogenic propellant in the pipeline is vaporized. As a result of experimental studies imitating the formation of vapors in the flow, we confirmed the possibility of full gas-phase condensation in case temperature of cryogenic liquid is lower than it's saturation temperature in the pipeline. Empirical equation allowing to calculate a nonequilibrium condensation region in the steady flow of cryogenic liquid was obtained as a non-dimensional form and the fields of practical application were suggested.