• Title/Summary/Keyword: 비파괴 손상 탐지

Search Result 36, Processing Time 0.02 seconds

A Study on Damage Detection of Production Riser (생산 라이저의 손상 탐지에 대한 연구)

  • Je, Hyun-Min;Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.179-184
    • /
    • 2015
  • The purpose of this study is to provide appropriate methodology to ensure the safety and integrity of the production riser in offshore structure. In order to select integrity estimation methodology for production riser, level I and II Non-destructive Damage Evaluation (NDE) methods that were applied to existing structures are classified and reviewed. Numerical analysis is performed to verify the applicability and capability on damage detection of reviewed methods. As a result, the damage detection methodology using modal strain energy is more sensitive in detection of the damage than other methods. In practice, the number of sensors is limited due to the environmental and financial conditions. The impact on damage detection performance by reducing the number of sensors is systematically investigated through a series of numerical analyses and the results are discussed. The optimal number of sensor for the integrity estimation of production riser is recommended.

Nondestructive Testing of Aging Aircraft (노후항공기의 비파괴시험 평가)

  • Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.34-46
    • /
    • 1999
  • 전 세계적으로 항공기의 노후화에 따른 안전성 확보와 수명연장을 위한 대책 연구가 활발하다. 미국의 경우 군용기 (주로 수송기)의 평균수명은 40년을 넘어서고 있으며 이들은 아직도 $20{\sim}30년$ 더 사용될 예정이다. 민간항공기의 경우에도 군용기만큼은 아니지만 노후화하고 있기는 마찬가지이다. 수명연장을 위해 여러가지 비파괴검사 기술이 활용되고 있으며, 새로운 비파괴 시험 평가 검사 방법들이 속속 개발되고 있다. 항공기의 안전을 위협하는 기체구조 손상의 2대 주범으로는 부식과 피로를 꼽을 수 있으며, 이를 탐지하고 평가하기 위한 경제적인 검사방법에 대한 연구가 미국을 중심으로 활발하게 진행되고 있는데, 이에 대한 최근 현황을 살펴본다.

  • PDF

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

Fatigue Damage Evaluation of Cr-Mo Steel with In-Situ Ultrasonic Surface Wave Assessment (초음파 시험에 의한 배관용 Cr-Mo강의 피로손상의 비파괴평가)

  • Kim, Sang-Tae;Lee, Hei-Dong;Yang, Hyun-Tae;Choi, Young-Geun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Although the ultrasonic method has been developed and used widely in the fields, it has been used only for measuring the defect size and thickness loss. In this study, the relationship between surface wave attenuation through micro-crack growth and variation of velocity under repeated cyclic loading has been investigated. The specimens are adopted from 2.25Cr-1Mo steel, which is used for power plant and pipeline system, and have dimensions of $200{\times}40{\times}4mm$. The results of ultrasonic test with a 5MHz transducer show that surface wave velocity gradually decreases from the point of 60% of fatigue life and the crack length of 2mm with the increasing fatigue cycles. From the results of this study, it is found that the technique using the ultrasonic velocity change is one of very useful methods to evaluate the fatigue life nondestructively.

  • PDF

Study on the Adaption Technique for Detection of Termites using Microwave (극초단파(Microwave)를 이용한 흰개미 탐지기술 적용연구)

  • Kim, Dae-Woon;Jeong, Seon-Hye;Lee, Sang-Hwan;Chung, Yong-Jae
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.77-83
    • /
    • 2010
  • The damage from the underground termite cannot be discovered with peculiar appearance of building but hollow phenomenon will occur. But there is no case in Korea as a non-destructive measurement of termite activation. Therefore, this research constructs non-destructive diagnostic techniques for wooden cultural properties using microwave detector (Termatrac, Australia). Result of maximun distance were measured 16cm (Pine tree, sensitivity 5, 6), 17cm (Zelkova and Douglas fir, sensitivity 5, 6). These results are expected that can be applied in the field. Result of field test using microwave detector, 33.8% of the wooden cultural properties were damaged by termites, and until now 7.8% (18 buildings) are being damaged in nationwide (total 231 buildings). Based on the above results, microwave detector will be able to be utilized effectively for detecting termite, preventing intrusion in wooden structure, and making full use of monitoring system periodically. In addition, it could be of great worth in preventing insect and microorganism in wooden structure.

Early Shell Crack Detection Technique Using Acoustic Emission Energy Parameter Blast Furnaces (음향방출 에너지 파라미터를 이용한 고로 철피균열의 조기 결함탐지 기술)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Bae, Dong-Myung;Yang, Bo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

An Effect on the Structural Integrity Assessment of Steam Generator Tubes with Resolution of Rotating Pancake Coils for Multiple Cracks (회전형 탐촉자의 다중균열 분해능이 증기발생기 전열관의 구조건전성 평가에 미치는 영향)

  • Kang, Yong-Seok;Cheon, Keun-Young;Nam, Min-Woo;Park, Jai-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.356-361
    • /
    • 2014
  • The eddy current testing performance directly affects the results of a steam generator tube integrity assessment because the integrity assessment of defected tubes is conducted based on eddy current testing results. This means that it may not be possible to accurately discriminate between adjacent flaws. This paper presents an investigation on the resolution of rotating pancake coils with multiple cracks and the effects on the structural integrity assessment of steam generator tubes.

Elasto-Magnetic Sensor-Based Local Cross-Sectional Damage Detection for Steel Cables (Elasto-Magnetic 센서를 이용한 강재 케이블 국부 단면 감소 손상 탐지)

  • Kim, Ju-Won;Nam, Min-Jun;Park, Seung-Hee;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The Elasto-magnetic sensor is applied to detect the local cross-sectional loss of steel cables in this study while it was originally developed for measuring the tensile force in the previous works. To verify the feasibility of the proposed damage detection technique, steel bars which have 4-different diameters were fabricated and the output voltage value was measured at each diameter by the E/M sensor. Optimal input voltage and working point are chosen so that the linearity and resolution of results can ensure through repeated experiments, and then the E/M sensor was measured the output voltage values at the damage points of steel bar specimen that was applied the 4 types of damage condition based on the selected optimal experimental condition. This proposed approach can be an effective tool for steel cable health monitoring.

Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave (유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지)

  • Joo, Young-Sang;Lee, Hyeong-Yeon;Kim, Jong-Bum;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2006
  • The thermal ratcheting deformation at the reactor baffle and upper internal structure of the liquid metal reactor (LMR) can occur due to movement of the hot sodium free surface. In in-service inspection of reactor internals of LMR, a new inspection technique should be developed for the detection of the thermal ratcheting damage. In this study, an inspection technique using ultrasonic guided wave is proposed for the detection of the thermal ratcheting damage of cylindrical vessels. A 316L stainless steel cylindrical shell specimen has been prepared. The thermal ratchet structural tests were cyclically performed by heat-up up to $550^{\circ}C$ with steep temperature gradients along the axial direction after cool-down by cooling water. Ultrasonic guided wave propagation has been characterized by analysis of dispersion curve of the stainless steel plate. The zero-order antisymmetric $A_0$ guided wave has been selected as the optimal mode for detection of the ratcheting deformation. It is confirmed that the thermal ratcheting deformation can be detected by the measurement of transit time difference of circumferentially propagated $A_0$ guided waves.

Ultrasonic Flaw Detection of Turbine Blade Roots (터빈 동익 Root부 초음파 탐상)

  • Jung, H.K.;Chung, M.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 1993
  • The necessity of ultrasonic inspection to detect the cracks in turbine blade is being increased as the forced outage of nuclear power plants have been occurred due to blade failure in turbine components. However, the complex blade root geometry causes the ultrasonic inspection technique not to be established yet and much effort is required to set up a more reliable inspection. In this paper, the ultrasonic inspection technique for flaw detectability, skew angle effect, identification of flaw and geometric signal have been investigated with a test block and discussed the interpretation of ultrasonic signal through the acquisition and analysis of RF waveform. The experimental results show that the proper examination procedure can be established. It is required that the skew angle is essential to decrease the effect of signals from the complex blade geometry. The present results of this study can be applied to the site inspection without blade disassembly.

  • PDF