• Title/Summary/Keyword: 비파괴탐사

Search Result 125, Processing Time 0.022 seconds

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor (지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정)

  • Kim, Hyun-Gu;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • Pot experiments using sand culture were conducted in 2004 under greenhouse conditions to evaluate the effect of nitrogen deficiency on red pepper biomass. Nitrogen stress was imposed by implementing 6 levels (40% to 140%) of N in Hoagland's nutrient solution for red pepper. Canopy reflectance measurements were made with hand held spectral sensors including $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$, and $Field\;Scout^{TM}$ Chlorophyll meter, and a spectroradiometer as well as Minolta SPAD-502 chlorophyll meter. Canopy reflectance and dry weight of red pepper were measured at five growth stages, the 30th, 40th, 50th, 80th and 120th day after planting(DAT). Dry weight of red pepper affected by nitrogen stress showed large differences between maximum and minimum values at the 120th DAT ranged from 48.2 to $196.6g\;plant^{-1}$, respectively. Several reflectance indices obtained from $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$ and Spectroradiometer including chlorophyll readings were compared for evaluation of red pepper biomass. The reflectance indices such as rNDVI, aNDVI and gNDVI by the $Crop\;Circle^{TM}$ sensor showed the highest correlation coefficient with dry weight of red pepper at the 40th, 50th, and 80th DAT, respectively. Also these reflectance indices at the same growth station was closely correlated with dry weight, yield, and nitrogen uptake of red pepper at the 120th DAT, especially showing the best correlation coefficient at the 80th DAT. From these result, the aNDVI at the 80th DAT can significantly explain for dry weight of red pepper at the 120th DAT as well as for application level of nitrogen fertilizer. Consequently ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season nitrogen management for red pepper providing both spatial and temporal information.

Current status and prospects of plant diagnosis and phenomics research by using ICT remote sensing system (ICT 원격제어 system 이용 식물진단, Phenomics 연구현황 및 전망)

  • Jung, Yu Jin;Nou, Ill Sup;Kim, Yong Kwon;Kim, Hoy Taek;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Remote Sensing (RS) is a technique to obtain necessary information in a non-contact and non-destructive method by using various sensors on the surface, water or atmospheric phenomena. These techniques combine elements such as sensors, and platform and information communication technology (ICT) for mounting the sensor. ICT has contributed significantly to the success of smart agriculture through quantification and measurement of environmental factors and information such as weather, crop and soil management to distribution and consumption stage, as well as the production stage by the cloud computer. Remote sensing techniques, including non-destructive non-contact bioimaging (remote imaging) is required to measure the plant function. In addition, bioimaging study in plant science is performed at the gene, cellular and individual plant level. Recently, bioimaging technology is considered the latest phenomics that identifies the relationship between the genotype and environment for distinguishing phenotypes. In this review, trends in remote sensing in plants, plants diagnostics and response to environment and status of plants phonemics research were presented.

Geotomography Applied for the Integrity Test of Cast-in-place Piles (현장타설콘크리트말뚝의 건전도 평가를 위한 geotomography의 적용 연구)

  • Lee Jae-Kyung;Park Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.5-12
    • /
    • 2005
  • Recently, geophysical prospecting methods have played very important roles in civil and environmental engineering problems. Technical advances in geophysical instruments and computer system made it possible to get underground images with very high resolution far purposes to resolve those problems. It was possible partly due to ever increasing demand for development of technologies needed to precisely detect polluted areas and prevent ground-related accidents. Based on the same demand, integrity tests of cast-in place piles draw more attention and development of accurate test procedures is required. Ultrasonic methods is one of most advanced non-destructive procedures. In the paper, a geotomography method is employed for the cast-in place pile integrity test using ultrasonic waves. The image of pile interior is scanned and scrutinized far better and more accurate decision in the cast-in place pile integrity. In this study, we firstly examined the accuracy fur tomography program with idealized synthetic models built in water tank: their position and size were changed in the tank and each case was studied. In the next stage, real concrete pile models were fabricated and images of anomaly areas inside the pile were scanned to successfully locate those areas.

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.

Pseudo-DC Resistivity Survey for Site Investigation at Urban Areas with Ambient Electrical Noises (전기잡음 간섭이 있는 도심지 지역 탐사를 위한 유사직류 전기비저항 기법)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.37-44
    • /
    • 2010
  • Recently, urban retrofit and extension, development of new buildings and facilities, and construction of underground structures like subway tunnels in urban areas give rise to significance of site investigation at urban areas. However, ambient electric noises, traffic vibrations, embedded objects work as obstacles to high-quality and accuracy in site investigation at urban areas. In this paper, a new technique called the pseudo-DC resistivity survey (in brief, PDC-R) was proposed to minimize the adverse effect of ambient electrical noises in resistivity survey. PDC-R technique utilizes an AC current with frequency range of 0.1 to 1.0 Hz rather than DC current, which is used for conventional resistivity survey. The motivation of using low-frequency AC current is to avoid 60-Hz components or its multiples in the resistivity survey which ambient noises are mostly composed of. The implementation of PDC-R technique also included the parametric study on skin effect, frequency effect and current-level effect, which led to the determination of optimal values of frequency and current level for PDC-R survey. The reliability and feasibility of PDC-R technique was verified through field tests, accompanied by the comparison with DC resistivity survey and CapSASW tests.

Characterizing Multichannel Conduit Signal Properties Using a Ground Penetrating Radar: An FDTD Analysis Approach (FDTD 수치해석을 이용한 다중 관로에 대한 GPR 탐지 신호 특성 분석)

  • Ryu, Hee-Hwan;Bae, Joo-Yeol;Song, Ki-Il;Lee, Sang-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.75-91
    • /
    • 2023
  • In this study, we explore the use of ground penetrating radar (GPR) for the nondestructive survey of subsurface conduits, focusing on the challenges posed by multichannel environments. A key concern is the shadow regions created by conduits, which significantly impact survey results. The shadow regions, which are influenced by conduit position and diameter, hinder signal propagation, thereby making detection within these regions challenging. Using finite-difference time-domain numerical analysis, we examined the characteristics of conduit signals, which typically manifest in hyperbolic patterns. Particularly, we investigated three conduit arrangements: horizontal, vertical, and diagonal. Automatic gain control was applied to amplify the signals, enabling the analysis of variations in shadow regions and signal characteristics for each arrangement. In the horizontal arrangement, the proximity of the two conduits resulted in the emergence of a new hyperbolic pattern between the existing conduits. In the vertical arrangement, the lower conduit could be detected using hyperbolic signals on either side, but the detection was challenging when the upper conduit diameter exceeded that of the lower conduit. In the diagonal arrangement, signal characteristics varied based on the position of shadow regions relative to the detection range of the equipment. Asymmetrical signal patterns were observed when the shadow regions fell within the detection range, whereas the signals of the two conduits were minimally impacted when the shadow regions were outside the detection range. This study provides vital insights into accurately detecting and characterizing subsurface multichannel conduits using GPR-a significant contribution to the field of subsurface exploration and management.

Steel Probing in Concrete Using Steel Corrosion Surface Measurement Method Modeling (철근부식 표면측정법 모델링을 통한 콘크리트 내 철근 탐사)

  • Rhim, Hong-Chul;Ma, Hyang-Hwa;Lee, Suk-Yong;Lee, Kun-Woo;Oh, Jin-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • Using non-invasive surface measurement method, the corrosion state of steel embedded inside concrete can be measured by placing four electrodes on the surface of concrete. Modeling of such measurements can provide valuable information as how interfacial impedance between corroded steel and surrounding concrete results in measured impedance on the concrete surface. In this paper, the modeling of surface measurement technique is used for the determination of the sensitivity of the measurements with respect to steel bar size embedded inside concrete and cover thickness. Modeling results indicated that steel bar sizes varied from D10 to D35 could be identified. Concrete cover thickness changes from 0.02 m to 0.1 m was also distinguished using the modeling scheme. The results confirm this modeling technique is capable of determining steel bar sizes and cover thickness, as well as simulating corrosion responses.