• Title/Summary/Keyword: 비파괴적 평가

Search Result 664, Processing Time 0.029 seconds

Evaluating Performance of Cable-Inspection Robot in Cable-Supported Bridge (케이블지지 교량의 케이블 점검 로봇 성능 평가)

  • Kim, Jaehwan;Seo, Dong-Woo;Jung, Kyu-San;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.74-79
    • /
    • 2020
  • Safety inspection of cable-supported bridge has increasingly attention as many cable-supported bridges are currently constructed/operated. Whilst cables as a main component in cable-supported bridge should be inspected regularly, traditional method (visual inspection) has limitation to check the condition of cables properly due to restricted factors. It is evidently necessary to develop cable-inspection robot to overcome this concern. In this respect, the main aim in this study is to manufacture the improved robot compared with the existing robot. The improved functions of the robot in this study were that the robot can be operated in large cable diameter (greater than 200 mm) and climbing ability of the robot increases. In addition, electro-magnetic sensor as a non-destructive method in the robot was added to detect damaged cables and performance of the sensor was evaluated in indoor and field experiments. Consequently, the robot was able to move on the cable with ~0.2m/s and to detect damaged cables using the sensor. It was also confirmed that performance of the robot in field test is similar to that in indoor test.

Material Characteristics and Nondestructive Deterioration Assessment for the Celestial Chart Stone, Korea (천상열차분야지도 각석의 재질특성과 비파괴 훼손도 평가)

  • Yoo, Ji Hyun;Lee, Myeong Seong;Choie, Myoungju;Ahn, Yu Bin;Kim, Yuri
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2018
  • Celestial Chart Stones (original and reproduction) in the National Palace Museum are representative scientific cultural heritage of Korea. Material analysis and nondestructive deterioration assessment were conducted for long-term preservation of these stones. Material analysis revealed that the original was composed of slate and the reproduction was made of dolostone. The original consists of quartz, mica, dolomite minerals, while the reproduction was made up of dolomite, calcite and forsterite. Major deterioration factors of the original stone were cracks and breakouts. In case of the reproduction, scratches and artificial materials were mainly observed. The green and black surface contaminants present at the sides and back of the two celestial chart stones were interpreted as resin-based paint materials. The physical property evaluation using ultrasonic velocity showed a low velocity in the upper left side of the original, while the front right side of the reproduction showed a weak property. Meanwhile, the To-Tc method using ultrasonic velocity was applied to major cracks that impede stability of the original. As a result, it has been calculated that the beginning and the center of the crack are the deepest.

Assessment of Frozen Soil Characterization Via Electrical Resistivity Survey (전기비저항 탐사를 활용한 동결 지반의 거동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.115-125
    • /
    • 2023
  • In this study, we evaluated the behavior of frozen soil using an electrical resistivity survey method-a nondestructive technique-and examined its characteristics through field experiments. Frozen soil was artificially prepared by injecting fluid to accelerate the freezing process, and naturally frozen soil was selected in a nearby area for comparison. A dynamic cone penetration test (DCPT) was performed to compare the reliability of the electrical resistivity survey, and time-domain reflectometry surveys were performed to assess the moisture content of the ground. Field experiments were conducted in February-when the atmosphere temperature was below freezing-and May-when the temperature was above freezing. This temperature-compensated method was used to determine reliability because the behavior of frozen soil depends on the underlying temperature. In the resistivity survey method, a section of high electrical resistivity was observed under freezing conditions due to the frozen water and converted into porosity. The converted porosity was compared with the porosity inferred from the DCPT, and the results showed that the measured electrical resistivity was valid.

Analysis of Surface Contaminants and Deterioration Degree on the Seated Stone Statue of Buddhist Master Seungga at Seunggasa Temple in Seoul, Korea (승가사 석조승가대사좌상의 손상도 및 표면오염물 분석)

  • Kim, Sung Han;Lee, Chan Hee;Naruto, Araki
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.497-508
    • /
    • 2017
  • This study was carried out to document and diagnose the conditions of the seated stone statue of Buddhist Master Seungga in Seunggasa temple immediately after its conservation treatment, which was found to be long covered in surface of white materials. The stone Halo was researched along with the Statue, and basic data was secured through precisely examination and nondestructive diagnosis. The result from the surface deterioration evaluation shows that both the Statue and Halo had a little bit of physical deterioration, although their level of chemical deterioration was proportionally higher due to discoloration. The physical property diagnosis using ultrasonic measurements on the Statue and Halo showed that the average ultrasonic velocity was found to be 3,570 m/s and 3,373 m/s, respectively, which corresponds to grade III, an indication of a favorable physical property. The surface covered materials were detected to be Ca, Ti, Pb, Fe, Al and Si, emanating from Hobun (Oster shell powder; $CaCO_3$) or lime ($CaO{\cdot}Ca(OH)_2$) and silicate minerals. Furthermore, Ti and Pb seems to be the component of the white coloring pigments, titanium white ($TiO_2$) and white lead ($2PbCO_2{\cdot}Pb(OH)_2$). Therefore, the seated stone statue of Buddhist Master Seungga is presumed to be painted with Hobun or lime and thereafter painted over with titanium white and white lead.

Process Risk Assessment for a Batch Condensation Reaction of Polyester Resin using K-PSR Technique (K-PSR 기법을 활용한 회분식 폴리에스터 축합반응에서의 공정 위험성 평가 연구)

  • Park, Kyung-Min;Lee, Dong-Kyu;Lee, Haakil;Lee, Joon-Man;Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2019
  • Risk assessment and analysis for a medium-to-small sized chemical plant that manufactures a polyester resin by the process of batch-type condensation reaction was conducted using K-PSR technique which is one of the risk assessment methods used to implement the Process Safety Management System (PSM). K-PSR is a risk assessment technique developed by KOSHA to compensate for difficulties caused by the lack of infrastructure of medium-to-small sized chemical plants in the re-evaluation. To apply the K-PSR technique, the entire process of a selected chemical palnt was classified in two review sections, i.e., the condensation reaction process and the dilution/filtration process, and the potential risks of the process about these review sections were identified and classified based on the four guide-words (release, fire.explosion, process trouble, and injury). As the results of the research, refer to recommend of risk rating has been confirmed that non-destructive testing of old facilities and the preparation of LOTO procedures for the electrical equipments are necessary as specific measures to prevent the risk of release and fire.explosion. It was also shown that pressure gauges and thermometers should be installed on the hot-oil supply piping to minimize the process trouble, and exhausting hood should be installed to prevent potential injury.

Deterioration Assessment and Structural‐Reinforcement of Stone Lantern of the Four Guardian Kings in Beopjusa Temple, Boeun (보은 법주사 사천왕석등의 비파괴 훼손도 평가 및 구조보강)

  • Choie, Myoungju;Lee, Myeong Seong;Jun, Yu Gun;Lee, Mi Hye;Kim, Yuri;Ha, Jun Kyeong
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • The stone lantern of the four guardian kings in the Beopjusa temple at Boeun was mainly made of biotite granodiorite consisting of porphyritic-textured potassium feldspar and included in ilmenite series. A base stone made of alkali granite was buried, after founded its place during an earlier restoration process. Cracking and break out are noticeable on this object. In addition, discoloration, salt crusting, and epiphytes were observed. The lantern was vulnerable in terms of physical and structural stability caused by cracking in the front and back of the light chamber and in the non-horizontal direction. According to the conservational condition of the stone lantern, structural reinforcement was carried out based on calculations, including those on the position, size, and anchor length of the titanium stiffener. Chemical and biological pollutants were washed off without damage to the surface of the stone material. Oxygenated iron pieces were replaced with titanium. Ethyl silicate was applied to the surface of the lantern for consolidation and smooth drainage.

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing (충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가)

  • Rizky Pitajeng;Julfikhsan Ahmad Mukhti;Seong-Hoon Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.

Reliability Evaluation of Compressive Strength of Reinforced Concrete Members (철근 콘크리트 구조 부재의 압축강도 추정 신뢰도 평가)

  • Hong, Seong-Uk;Park, Chan-Woo;Lee, Yong-Taeg;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.132-140
    • /
    • 2019
  • In this study, a specimen composed of columns, walls, beams, and slabs was fabricated to investigate the estimated reliability using nondestructive test method for the location of structural members of reinforced concrete single layer structures. And for accurate analysis in the comparison process with the existing estimation formula, we try to analyze the reliability through statistical approach by using error rate comparison and Confidence interval estimation. As a result, The average error rate of the core test was 18.8% compared with the result of estimating the compressive strength using the ultrasonic pulse velocity method. The average error rate of the core test results compared with the result of estimating the compressive strength using the rebound hardness method was 20.1%, confirming the field applicability. it is judged that the reliability of the compressive strength estimation can be derived from the wall member to make a quick and efficient structure safety diagnosis using the ultrasonic pulse velocity method. In addition, it is judged that the reliability of the compressive strength estimation can be derived from the beam member to make a quick and efficient structure safety diagnosis using the rebound hardness method.

Interfacial Properties and Sensing of Carbon Nanofiber/Tube and Electrospun Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique (전기저항측정 및 미세역학시험법을 이용한 탄소나노섬유/튜브 및 전기방사된 나노섬유/에폭시 복합재료의 계면특성 및 감지능 연구)

  • Jung Jin-Gyu;Kim Sung-Ju;Park Joung-Man
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2005
  • Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites have been investigated by using electro-micromechanical technique. The electrospun PVDF nanofibers were also prepared as a piezoelectric sensor. The electro-micromechanical techniques were applied to evaluate sensing response of carbon nanocomposites by measuring electrical resistance under an uniform cyclic loading. Composites with higher volume content of CNT showed significantly higher tensile properties than neat and low volume$\%$ CNT composites. CNT composites showed humidity sensing within limited temperature range. CNT composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to crystallinity increase, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also showed sensing effect on humidity and temperature as well as stress transferring. Nanocomposites and electrospun PVDF nanofiber web can be applicable for sensing application.

Nondestructive Damage Identification of Free Vibrating Thin Plate Structures Using Micro-Genetic Algorithms (마이크로 유전 알고리즘을 이용한 자유진동 박판구조물의 비파괴 손상 규명)

  • Lee, Sang Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.173-181
    • /
    • 2005
  • This study deals with a method to identify damages of free vibrating thin plate structures using the combined finite element method (FEM) and the advanced uniform micro-genetic algorithm.To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. The technique described in this paper allows us not only to detect the damaged elements but also to find their numbers, locations, and the extent of damage.To demonstrate the feasibility of the proposed method, the algorithm is applied to a free vibrating steel thin plate structures with arbitrary damages. From the standpoint of computation efficiency, the proposed method in this study has advantages when compared with the existing simple genetic algorithms. The numerical examples demonstrate that the method using micro-genetic algorithms can possibly detect correctly the damages of thin plates from only several natural frequencies instead of their natural modes.