• Title/Summary/Keyword: 비파괴기법

Search Result 546, Processing Time 0.022 seconds

A Study on Damage Assessment Technique of Railway Bridge Substructure through Dynamic Response Analysis (동적 응답 분석을 통한 철도교량 하부구조의 피해평가기법연구)

  • Lee, Myungjae;Lee, Il-Wha;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.61-69
    • /
    • 2021
  • In this study, scale down model bridge piers were fabricated and non-destructive experiments conducted with an impact load to determine scours in the ground adjacent to the bridge piers using the natural frequency of the bridge piers. Three scale-model bridge piers with different heights were fabricated, and they penetrated the ground at a depth of 0.35 m. The scours around the bridge piers were simulated as a side scour and foundation scour. The experiments were conducted in 13 steps, in which scouring around the model bridge piers was performed in 0.05 m excavation units. To derive the natural frequency, the impact load was measured with three accelerometers attached to the model bridge piers. The impact load was applied with an impact hammer, and the top of the model bridge pier was struck perpendicularly to the bridge axis. The natural frequency according to the scour progress was calculated with a fast Fourier transform. The results demonstrated that the natural frequency of each bridge pier tended to decrease with scour progress. The natural frequency also decreased with increasing pier height. With scour progress, a side scour occurred at 70% or higher of the initial natural frequency, and a foundation scour occurred at less than 70%.

Sensitive and Selective Electrochemical Glucose Biosensor Based on a Carbon Nanotube Electronic Film (탄소나노튜브 전자 필름을 이용한 고감도-고선택성 전기화학 글루코스 센서)

  • Lee, Seung-Woo;Lee, Dongwook;Seo, Byeong-Gwuan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.188-194
    • /
    • 2022
  • This work presents a non-destructive and straightforward approach to assemble a large-scale conductive electronic film made of a pre-treated single-walled carbon nanotube (SWCNT) solution. For effective electron transfer between the immobilized enzyme and SWCNT electronic film, we optimized the pre-treatment step of SWCNT with p-terphenyl-4,4"-dithiol and dithiothreitol. Glucose oxidase (GOx, a model enzyme in this study) was immobilized on the SWCNT electronic film following the positively charged polyelectrolyte layer deposition. The glucose detection was realized through effective electron transfer between the immobilized GOx and SWCNT electronic film at the negative potential value (-0.45 V vs. Ag/AgCl). The SWCNT electronic film-based glucose biosensor exhibited a sensitivity of 98 ㎂/mM·cm2. In addition, the SWCNT electronic film biosensor showed the excellent selectivity (less than 4 % change) against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, dopamine, and acetaminophen, by avoiding co-oxidation of the interfering substances at the negative potential value.

Change in the Concrete Strength of Forest Road Drainage Systems Caused by Forest Fires (산불로 인한 임도 배수시설의 콘크리트 강도 변화)

  • Ye Jun Choe;Jin-Seong Hwang;Young-In Hwang;Hyeon-Jun Jeon;Hyeong-Keun Kweon;Joon-Woo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.451-458
    • /
    • 2023
  • As forest fires continue to increase in scale worldwide, the importance of forest roads in relation to forest fire prevention and suppression has become increasingly evident. To ensure effective functioning during a forest fire disaster, it is crucial to apply appropriate road planning and ensure roads' structural integrity. However, previous studies have predominantly focused on the impact of forest fires on firebreak efficacy and road placement, meaning that insufficient attention has been paid to ensuring the safety of these facilities. Therefore, this study sought to compare the strength of concrete facilities within areas damaged by forest fires over the past three years by using the rebound hammer test to identify signs of thermal degradation. The results revealed that concrete facilities damaged by forest fires exhibited significantly lower strength (15.6 MPa) when compared with undamaged facilities (18.0 MPa) (p<0.001), and this trend was consistent across all the target facilities. Consequently, it is recommended that safety assessment criteria for concrete forest road facilities be established to prevent secondary disasters following forest fire damage. Moreover, continuous monitoring and research involving indoor experiments are imperative in terms of enhancing the stability of forest road structures. It is expected that such research will lead to the development of more effective strategies for forest fire prevention and suppression.

Assessment of Frozen Soil Characterization Via Electrical Resistivity Survey (전기비저항 탐사를 활용한 동결 지반의 거동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.115-125
    • /
    • 2023
  • In this study, we evaluated the behavior of frozen soil using an electrical resistivity survey method-a nondestructive technique-and examined its characteristics through field experiments. Frozen soil was artificially prepared by injecting fluid to accelerate the freezing process, and naturally frozen soil was selected in a nearby area for comparison. A dynamic cone penetration test (DCPT) was performed to compare the reliability of the electrical resistivity survey, and time-domain reflectometry surveys were performed to assess the moisture content of the ground. Field experiments were conducted in February-when the atmosphere temperature was below freezing-and May-when the temperature was above freezing. This temperature-compensated method was used to determine reliability because the behavior of frozen soil depends on the underlying temperature. In the resistivity survey method, a section of high electrical resistivity was observed under freezing conditions due to the frozen water and converted into porosity. The converted porosity was compared with the porosity inferred from the DCPT, and the results showed that the measured electrical resistivity was valid.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.