• Title/Summary/Keyword: 비탈면 안정

Search Result 116, Processing Time 0.026 seconds

Three-dimensional Stability Analysis of Landslides in Unsaturated Soils: A Case Study (불포화 지반에서의 산사태 3차원 안정해석에 대한 사례연구)

  • Kim, Seong Jin;Oh, Seboong;Yoo, Young Geun;Shin, Ho Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.359-369
    • /
    • 2022
  • In slope stability analysis for landslides, mountains have various slopes and geographical features, and hence it is necessary to estimate stability using rigorous analysis methods. In this study, after the analysis of infiltration behavior through unsaturated layers due to rainfall, the stability of landslide was estimated to account for the variation of pore water pressures. In the analysis of slope stability, a three-dimensional slope analysis was compared with an infinite slope analysis in a case study of terrain in which an actual landslide occurred. In the three-dimensional slope stability analysis, it was found that the location of the failure and the failure area were predicted accurately based on the detailed geological information despite the variation of geographical features.

Analytical Evaluation on Design Criteria for Cut Slopes (국내 절토 비탈면 설계기준의 해석적 평가)

  • Hwang, Young-Cheol;Lee, Hong-Sung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.51-57
    • /
    • 2007
  • In the design of slopes during rainfall, the groundwater level is assumed to be located at the ground surface, based on the change in characteristics of rainfall. In addition, stability investigations are performed for large cut slopes in the design of slopes while standard inclinations specified in the design criteria are applied for the slopes that stability investigations are not performed. In spite of the strengthened criteria of groundwater location, slope failures continuously occur during heavy rainfall, regardless of magnitude of slopes. In order to investigate the cause of the failures, stability investigations have been performed on standard inclination of slopes suggested in the design criteria for both dry and rainfall cases by ground condition in this research. Despite that standard inclination of slopes specified in the design criteria should be stable for both dry and rainfall cases, the results show that standard factor of safety has not been obtained in many cases; more than 50% of total cases for dry cases and more than 65% of total cases for rainfall case. Based on the results, this paper indicates the problems in the current design criteria and proposes the plans for establishment of countermeasure.

  • PDF

Integral Method of Stability Analysis and Maintenance of Slope (비탈면 안정해석과 유지관리의 통합해석기법)

  • Park, Mincheol;Yoo, Byeongok;Baek, Yong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.27-35
    • /
    • 2016
  • Even if the various data analyzing methods were suggested to examine the measured slope behaviors, it is difficult to find methods or procedures for connecting the analyzed results of slope stability and measured slope data. This research suggests the analyzing methods combing the stability analysis and measured data based on progressive failure of slope. Slope failure analysis by time degradation were calculated by strength parameters composed of strength reduction coefficients, also which were compared to the measured data according to the variations of safety factor and displacement of slopes. The accumulated displacement curve were shown as 3rd degree polynomials by suggested procedures, which was the same as before researches. The reverse displacement velocity curves were shown as linear function for prediction of brittle slope failures, also they were shown as 3rd degree polynomials for ductile slope failures, which were the same as the suggested equation by Fukuzono (1985) and they were very similar behaviors to the in-situ failure cases.

Effects of Geological Structures on Slope Stability : An Example from the Northwestern Part of Daegu, Korea (퇴적암 내의 지질구조가 비탈면 안정성에 미치는 영향 : 대구 북서부 지역의 예)

  • Ko, Kyoung-Tae;Choi, Jin-Hyuck;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • The purpose of this work is to gain a better understanding of the interrelationships between geological structures and slope failure in sedimentary rocks. In the studied slopes, construction-related slope failure could only be observed on the south-dipping slopes. This indicates that slope stability may be dependent on the angular relationships between the dip direction of bedding and the orientation of the slope. Slope failure continued, post-construction, around large fault zones in the studied outcrop; these fault damage zones are, however, not easily recognized in the field. Here we suggest a new method that uses accumulated fracture density to precisely identify fault damage zones. Multiple-faced slopes are now increasingly being exposed during large-scale construction projects in South Korea. This multiple-faced slope analysis indicates that the stability of a slope should be evaluated by identifying domains, through the analysis of possible slopes and their angular relationships with bedding and other discontinuities, prior to construction. Therefore, careful consideration of geological structures such as bedding and other discontinuities, and their angular relationships during the design of cuttings through sedimentary rocks, will increase the efficiency of construction and enable the safe construction of more stable slopes that will retain their stability after construction.

A Study on the Change of Slope Safety Factor according to the Anchor Construction Interval (앵커 시공 간격에 따른 비탈면 안전율 변화 연구)

  • Kim, Jinhwan;Lee, Jonghyun;Kwon, Oil;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.515-523
    • /
    • 2020
  • If the safety factor does not secure the safety factor suggested in the design standard at the slope design stage, the safety factor is secured by installing an anchor. Stability analysis is used to verify the effect of reinforcing the slope of the anchor, but in this process, most of the anchor construction intervals are assumed to be equal and analyzed. For economical and effective slope reinforcement, stability analysis is required by adjusting the anchor construction interval. In this study, the effect of the anchor construction interval on the change of the safety factor of the slope was identified. Stability analysis was performed by setting a virtual slope with two berms and different anchor construction intervals. As a result of the analysis, the stability of the slope is secured when the anchor spacing of the lower surface is narrowed and the anchor gaps of the upper and middle surfaces are wider than when anchors are installed at the same intervals on the upper, middle, and lower surfaces of the slope. The result was a 15% reduction in the amount of anchors. This means that, rather than reinforcing anchors at the same intervals, it is economical and effective to have an economical and effective reinforcement effect to vary the anchor construction intervals according to the slope characteristics.

A Study on Automatic Classification of Characterized Ground Regions on Slopes by a Deep Learning based Image Segmentation (딥러닝 영상처리를 통한 비탈면의 지반 특성화 영역 자동 분류에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung;Kim, Seung Hyeon;Ha, Dae Mok;Choi, Isu
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.508-522
    • /
    • 2019
  • Because of the slope failure, not only property damage but also human damage can occur, slope stability analysis should be conducted to predict and reinforce of the slope. This paper, defines the ground areas that can be characterized in terms of slope failure such as Rockmass jointset, Rockmass fault, Soil, Leakage water and Crush zone in sloped images. As a result, it was shown that the deep learning instance segmentation network can be used to recognize and automatically segment the precise shape of the ground region with different characteristics shown in the image. It showed the possibility of supporting the slope mapping work and automatically calculating the ground characteristics information of slopes necessary for decision making such as slope reinforcement.

Change of Slope Stability due to Slope Inclination and Surface Conditions (사면경사와 표면 조건에 따른 사면안정성 해석)

  • Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Slope stability is affected by duration of precipitation, probable rainfall intensity, unsaturated soil property, and soil strength. The recent analyses of slope stability tend to include unsaturated analysis based on infiltration properties of soil, while researches of unsaturated soil slope tend to include the analysis of deformation and stress distribution of soil over time. However, infiltration property of unsaturated soil slope depends not only on intensity or duration of precipitation, but also on relief and surface condition, which is not considered in status quo. This research uses hydrologic model parameters of soil in order to consider effects of inclination on filtration, and carries out analysis of unsaturated soil slope to confirm the effects according to slope inclination and surface condition. In conclusion, using slope stability analysis, the need to consider infiltration rate according to inclination and surface condition was confirmed even under the same precipitation conditions.

Reinforcement Effect of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트 보강 효과)

  • Kang, Tae-Hee;Jung, Hyuk-Sang;Kim, Jin-Hwan;Back, In-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.151-163
    • /
    • 2021
  • This paper is dealt with railway slope stability for slope reinforcement using a geosynthetic concrete composite mat(GCCM). Recently, according to a change in weather caused by global warming, train operation has been restricted by the loss of backfill slope at the roadbed, which is consists of gravel, due to typhoons and heavy rainfall. In addition, the amount of damage is getting more significant than the cost of restoration, and the safety of workers is worried. In order to improve this limitation, a slope stability analysis was applied with a rapid hardening composite mat so that it can quickly secure a construction surface with increased workability and work stability and reduce maintenance costs by preventing re-loss in case of heavy rain and fundamentally blocking vegetation. As a result of the analysis, it was confirmed that the increase in safety factor was confirmed when the rapid harding composite mat was applied.

Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season (우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구)

  • Song, Pyung-Hyun;Baek, Yong;You, Byung-Ok;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.45-54
    • /
    • 2014
  • Many studies have been made on investigation, design, explanation and treatments etc. to minimize slope failure. However, the problem is that failures of cutting slope and natural slope due to Typhoon and localized heavy rainfall are still not reduced. It is difficult to treat the problem by only strengthening the design standard. And it is very necessary to carry out design and safety analysis under the most suitable conditions considering foundation and rainfall characteristics. In this study, variations of safety factor were discussed from different aspects to investigate the influence of different parameters of rainfall and analysis conditions. Rainfall and foundation conditions are supposed to be the most sensitive parameters to slope stability, and numerical analysis were performed by changing parameters of the two conditions. Rainfall behavior is based on the domestic statistical rainfall and foundation condition is selected as unsaturated soils. Study results show that, application of rainfall characteristics in different area and parameters of unsaturated soils are responding sensitively to variations of slope safety. Therefore, the input parameters should be fully examined when performing the practical design.

Evaluation of Stability of Slope with Granite Weathered Soil considering Rainfall Events (강우사상을 고려한 화강풍화토 비탈면의 안정성 평가)

  • Kim, Gyu-Hyeong;Hwang, Eui-Pil;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Purpose: This study conducted a slope stability study considering changes in the ground water level due to rain phenomena and the duration of rainfall, that is for the purpose of analyzing the stability of the slope surface of the cut section, seepage numerical analysis is performed by height of slope and rainfall accident, and the characteristics of rainfall was applied reasonably in order to determine the slope change during rain by analyzing rainfall and rainfall pattern due to climate change. Results: As a result of numerical analysis of stability for slope composed of the granite weathered soils according to the characteristics of rainfall(Uniform Rainfall, US Army Corps., Huff's method - 1/4, 4/4), Conclusion: The higher the slope, the smaller the safety factor of the slope, the smaller the elevation of the ground water level as the rainwater seepage does not reach the underground water level. In addition, the ground water level was assessed to be rose significantly in condition of case 3 Huff's method - 1/4, rain pattern with the largest initial rainfall duration, and the safety factor was analyzed to be small.